Part Number Hot Search : 
E334K FM24C F1210 MC33348 KTLP3502 M66255FP XHXXX CY2305
Product Description
Full Text Search
 

To Download GX3190-CBE3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 of 47 proprietary & confidential gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 146 x 290 3.5gb/s crosspoi nt switch with trace equalization and output de-emphasis gx3190 www.semtech.com key features ? 146 x 290 crosspoint switch architecture supporting broadcast and multi-cast modes ? supports all data rates up to 3.5gb/s ? low power consumption: 31.51w typical (all channels active) ? sophisticated, dynamic on-chip power management control ? independent, programmable input trace equalization to reduce deterministic jitter (isi) ? independent, programmable output de-emphasis for driving long board traces ? high-speed, video-optimized control for multi-format applications ? built-in system test features with on-chip prbs generators and analyzers ? 2.5v analog core voltage, 1.8v digital core voltage ? input and output voltages support either 1.2v, 1.8v or 2.5v cml ? jtag-controlled boundary scan ? selectable parallel/se rial host interface ? 50mm x 50mm bga (2377 ball) ? operating temperature range: 0c to +85c ? rohs compliant applications large m x n cascaded routers/switch fabrics for: ? professional broadcast applications ? enterprise and carrier applications ? high-speed automated test equipment ? 10gbe and infiniband networks description the gx3190 is a low-power, high-speed 146 x 290 crosspoint switch, with robust signal conditioning circuits for driving and receiving hi gh-speed signals through backplanes. the device typically consumes 31.51w of power with all channels operational, and features sophisticated, dynamically scalable power management. unused portions of the core are automatically turned off without affecting the operation of the remaining channels. the signal conditioning features of the gx3190 include per-input programmable equalization and per-output programmable de-emphasis. the input equalizer removes isi jitter?typically caused by pcb trace losses?by opening the input data eye in applications where long pcb traces are used. there are four settings available for the input equalizer, allowing flexibility in adjusting the equalization level on a per-input basis. output de-emphasis capability provides a boost of the high-frequency content of the output signal, such that the data eye remains open after passing through a long interconnect of pcb traces and connectors. there are four de-emphasis settings that can be enabled on a per-output basis. two integrated programmable pattern generators, and two pattern checkers are provided to assist in system test and configuration. the pattern generators can each be routed to any output of the device without impacting the normal operation of any other channel. any input can be routed to each of the pattern checkers. the chip features eight independent strobe inputs, update_en[7:0], which are used to determine the timing of the output updates. any output can be linked to any strobe.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 2 of 47 proprietary & confidential www.semtech.com gx3190 functional block diagram input 0 de-emp output 0 output 287 input 143 trace eq parallel/serial interfaces and general registers active configuration latch input configuration latch jtag and boundary scan reference clock/crystal buffer programmable pattern generator 1 mon0/mon0 update_en[7:0] p_dat [15:0] p_add [11:0] sclk sdin sdout ref_clk_in ref_clk_out sdi[0]/sdi[0] sdi[287]/sdi[287] programmable pattern generator 0 sdo[0]/sdo[0] sdo[287]/sdo[287] trace eq p_r/w de-emp pattern checker & status monitor 0 pattern checker & status monitor 1 mon1/mon1 ext_pg0/ext_pg0 ext_pg1/ext_pg1 reset host_s/p s_cs p_cs p_ads tck tdi tdo tms input 144 trace eq input 145 output 288 output 289 de-emp 146 x 290 differential cross-point switch matrix de-emp trace eq
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 3 of 47 proprietary & confidential www.semtech.com revision history contents key features ................................................................................................................... .....................................1 applications................................................................................................................... ......................................1 description.................................................................................................................... .......................................1 revision history ............................................................................................................... ..................................3 1. ball out .................................................................................................................... .........................................5 1.1 ball assignment ........................................................................................................... .....................5 1.2 ball descriptions ......................................................................................................... ......................6 2. electrical characteristics .................................................................................................. ..........................9 2.1 absolute maximum ratings .................................................................................................. ........9 2.2 recommended operating conditions ..... ........... .......... ........... ........... ........... ........... ......... ..... 10 2.3 dc electrical characteristics ...... ....................................................................................... ........ 11 2.4 ac electrical characterist ics ............................................................................................. ........ 15 3. input/output equivalent circuits ............................................................................................ ............. 17 4. detailed description........................................................................................................ .......................... 20 4.1 serial data input ......................................................................................................... ................... 20 4.2 serial data output ........................................................................................................ ................. 21 4.3 crosspoint switch matrix operation ...................................................................................... 23 4.4 propagation delay ......................................................................................................... ................ 24 4.5 using multiple strobes .................................................................................................... ............. 24 4.6 pattern generator and pattern checker ................................................................................ 25 4.6.1 pattern generator........................................................................................................ ...... 25 4.6.2 pattern checker.......................................................................................................... ........ 26 4.7 horizontal eye measurement ................................................................................................ .... 30 4.7.1 configuration for horizontal eye measurement . ................................................... 30 4.8 temperature sensors ....................................................................................................... ............. 30 4.9 27mhz reference clock ..................................................................................................... ......... 33 version eco pcn date changes and/or modifications 2 011798 ? mar c h 2013 c orre c te d se c on d b ullet in s e c tion 4.7.1 , an d a dd e d a note in s e c tion 4.4 . 1 158397 ? o c to b er 2012 in c lu d e d e s d volta g e s ensitivity in ta b le 2-1 . mo d ifi c ations to ta b le 4-18 an d s e c tion 4.12.2 to in c lu d e auto-in c rement timin g an d fun c tionality. up d ates to appen d ix - relevant do c umentation with c lear referen c e to c orre c t d o c uments. c onverte d d o c ument to data s heet. 0 157405 ? mar c h 2012 c onverte d d o c ument to preliminary data s heet. up d ates throu g hout. a 157287 ? novem b er 2011 new d o c ument.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 4 of 47 proprietary & confidential www.semtech.com 4.10 device power-up .......................................................................................................... .............. 33 4.11 device reset ............................................................................................................. ..................... 34 4.12 host interface ........................................................................................................... .................... 34 4.12.1 parallel host interface specifications .......... ............................................................ 34 4.12.2 serial host interface specifications .......................................................................... 39 5. application information ..................................................................................................... ..................... 41 5.1 power supply filtering and recommen dations ........ ........... ........... ........... ........... ......... ..... 41 5.2 estimated worst-case load current steps ........................................................................... 42 5.2.1 vcc_25_a supply.......................................................................................................... ... 42 5.2.2 vcc_out1, vcc_out2 supplies ................................................................................ 42 5.2.3 vcc_in1, vcc_in2 supplies......................................................................................... 43 6. package and ordering information............................................................................................ .......... 44 6.1 package dimensions ........................................................................................................ ............. 44 6.2 package thermal data and information ................................................................................ 45 6.3 marking diagram ........................................................................................................... ................ 45 6.4 solder reflow profile ..................................................................................................... ............... 46 6.5 ordering information ...................................................................................................... ............. 46 appendix - relevant documentation .............................................................................................. ........ 46
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 5 of 47 proprietary & confidential www.semtech.com 1. ball out 1.1 ball assignment fi g ure 1-1: g x3190 ball assi g nment overview (top view) sdi_ 39 1 2 3 4 5 6 7 8 9 101112131415 161718 19 20212223 2425262728 29 31 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 a b c d e f g h j k l m n p r t u v w y aa ab ac ad ae af ag ah aj ak al am an ap ar at au av aw 1 2 3 4 5 6 7 8 9 1011121314151617 18 192021 2223 242526272829 31 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd vcc_ 25_a gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd vcc_ 25_a gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd gnd vdd_ 25 vdd _25 vdd_ 25 vdd_ 25 vcc_ 25_a vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out1 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vdd_ 18 vdd_ 18 vdd_ 18 vdd_ 18 vdd_ 18 vdd_ 18 vdd_ 18 vdd_ 18 vdd_ 18 vdd_ 18 vddio _d ldo0 ldo_ digital ldo1 ldo2 por_ dft reset clk_ ref_ in clk_ ref_ out gnd gnd gnd gnd gnd gnd tdo tdi tck sdout sclk p_r/w s_cs rsv _dnc rsv _dnc rsv _dnc rsv _dnc host_ s/p p_ads p_add 0 p_add 1 p_add 10 p_add 11 p_add 2 p_add 3 p_add 4 p_add 5 p_add 6 p_add 7 p_add 8 p_add 9 p_dat 0 p_dat 1 p_dat 10 p_dat 11 p_dat 2 p_dat 3 p_dat 4 p_dat 5 p_dat 6 p_dat 7 p_dat 8 p_dat 9 p_cs p_dat 12 p_dat 13 p_dat 14 p_dat 15 tms update _en0 update _en1 update _en2 update _en3 update _en4 update _en5 update _en6 update _en7 sdin sdi _0 sdi_ 100 sdi_ 103 sdi_ 107 sdi_ 104 sdi_ 108 sdi_ 11 sdi_ 111 sdi_ 115 sdi_ 119 sdi_ 112 sdi_ 116 sdi_ 12 sdi_ 120 sdi_ 124 sdi_ 128 sdi_ 132 sdi_ 136 sdi_ 140 sdi_ 144 sdi_ 148 sdi_ 152 sdi_ 123 sdi_ 127 sdi_ 131 sdi_ 135 sdi_ 143 sdi_ 147 sdi_ 139 sdi_ 151 sdi_ 155 sdi_ 15 sdi_ 156 sdi_ 16 sdi_ 160 sdi_ 159 sdi_ 163 sdi_ 167 sdi_ 7 sdi_ 171 sdi_ 175 sdi_ 179 sdi_ 164 sdi_ 168 sdi_ 172 sdi_ 176 sdi_ 180 sdi_ 183 sdi_ 187 sdi_ 19 sdi_ 191 sdi_ 195 sdi_ 199 sdi_ 203 sdi_ 184 sdi_ 188 sdi_ 192 sdi_ 196 sdi_ 20 sdi_ 200 sdi_ 204 sdi_ 207 sdi_ 215 sdi_ 219 sdi_ 223 sdi_ 227 sdi_ 23 sdi_ 231 sdi_ 235 sdi_ 239 sdi_ 243 sdi_ 247 sdi_ 208 sdi_ 212 sdi_ 216 sdi_ 220 sdi_ 224 sdi_ 228 sdi_ 232 sdi_ 236 sdi_ 24 sdi_ 240 sdi_ 244 sdi_ 248 sdi_ 251 sdi_ 259 sdi_ 263 sdi_ 267 sdi_ 252 sdi_ 256 sdi_ 260 sdi_ 264 sdi_ 268 sdi_ 272 sdi_ 276 sdi_ 27 sdi_ 271 sdi_ 275 sdi_ 279 sdi_ 28 sdi_ 280 sdi_ 284 sdi_ 32 sdi_ 36 sdi_ 40 sdi_ 44 sdi_ 48 sdi_ 52 sdi_ 60 sdi_ 64 sdi_ 68 sdi_ 72 sdi_ 76 sdi_ 80 sdi_ 84 sdi_ 88 sdi_ 92 sdi_ 96 sdi_ 3 sdi_ 31 sdi_ 35 sdi_ 39 sdi_ 43 sdi_ 47 sdi_ 51 sdi_ 55 sdi_ 59 sdi_ 63 sdi_ 67 sdi_ 71 sdi_ 75 sdi_ 79 sdi_ 83 sdi_ 87 sdi_ 91 sdi_ 95 sdi_ 99 sdi_ 4 gnd digital _cl_sel gnd rsv _dnc rsv _dnc rsv _dnc rsv _dnc dtherma 0 dthermk 0 dthermk 3 dtherma 2 dthermk 2 dtherma 3 dtherma 1 dthermk 1 lf_ digital lf1 vcc _25_ vco0 vcc_ vco_ digital vcc_ 25_ vco1 vcc _25_ vco2 nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc nc ext clk0 ext _clk2 ext_ clk_ digital ext _clk1 vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc _in1 vcc _in1 vcc _in1 vcc _in1 vcc _in1 vcc _in1 vcc _in1 vcc _in1 vcc _in1 mon1 sdo_ 0 sdo_ 10 sdo_ 100 sdo_ 110 sdo_ 102 sdo_ 104 sdo_ 106 sdo_ 112 sdo_ 1 sdo_ 105 sdo_ 107 sdo_ 109 sdo_ 11 sdo_ 101 sdo_ 103 sdo_ 111 sdo_ 113 sdo_ 115 sdo_ 117 sdo_ 119 sdo_ 121 sdo_ 123 sdo_ 125 sdo_ 127 sdo_ 129 sdo_ 13 sdo_ 131 sdo_ 133 sdo_ 135 sdo_ 137 sdo_ 139 sdo_ 141 sdo_ 143 sdo_ 145 sdo_ 147 sdo_ 149 sdo_ 15 sdo_ 151 sdo_ 153 sdo_ 155 sdo_ 157 sdo_ 159 sdo_ 161 sdo_ 108 sdo_ 114 sdo_ 116 sdo_ 118 sdo_ 120 sdo_ 12 sdo_ 122 sdo_ 124 sdo_ 126 sdo_ 128 sdo_ 130 sdo_ 132 sdo_ 134 sdo_ 136 sdo_ 154 sdo_ 144 sdo_ 14 sdo_ 142 sdo_ 140 sdo_ 138 sdo_ 148 sdo_ 146 sdo_ 152 sdo_ 170 sdo_ 160 sdo_ 158 sdo_ 156 sdo_ 16 sdo_ 162 sdo_ 164 sdo_ 166 sdo_ 168 sdo_ 150 sdo_ 176 sdo_ 174 sdo_ 172 sdo_ 194 sdo_ 180 sdo_ 182 sdo_ 184 sdo_ 202 sdo_ 192 sdo_ 222 sdo_ 188 sdo_ 178 sdo_ 196 sdo_ 198 sdo_ 200 sdo_ 218 sdo_ 220 sdo_ 206 sdo_ 208 sdo_ 226 sdo_ 212 sdo_ 230 sdo_ 216 sdo_ 186 sdo_ 224 sdo_ 190 sdo_ 256 sdo_ 214 sdo_ 228 sdo_ 18 sdo_ 2 sdo_ 20 sdo_ 22 sdo_ 163 sdo_ 165 sdo_ 167 sdo_ 169 sdo_ 171 sdo_ 173 sdo_ 175 sdo_ 177 sdo_ 179 sdo_ 181 sdo_ 183 sdo_ 185 sdo_ 187 sdo_ 189 sdo_ 191 sdo_ 193 sdo_ 195 sdo_ 197 sdo_ 199 sdo_ 201 sdo_ 203 sdo_ 205 sdo_ 207 sdo_ 209 sdo_ 211 sdo_ 213 sdo_ 215 sdo_ 217 sdo_ 219 sdo_ 221 sdo_ 223 sdo_ 225 sdo_ 227 sdo_ 23 sdo_ 17 sdo_ 19 sdo_ 21 sdo_ 229 sdo_ 231 sdo_ 233 sdo_ 235 sdo_ 237 sdo_ 239 sdo_ 241 sdo_ 243 sdo_ 245 sdo_ 247 sdo_ 249 sdo_ 251 sdo_ 253 sdo_ 255 sdo_ 257 sdo_ 259 sdo_ 261 sdo_ 263 sdo_ 265 sdo_ 267 sdo_ 269 sdo_ 271 sdo_ 273 sdo_ 275 sdo_ 277 sdo_ 279 sdo_ 281 sdo_ 283 sdo_ 285 sdo_ 287 sdo_ 25 sdo_ 27 sdo_ 232 sdo_ 266 sdo_ 204 sdo_ 238 sdo_ 252 sdo_ 210 sdo_ 276 sdo_ 242 sdo_ 248 sdo_ 250 sdo_ 240 sdo_ 254 sdo_ 272 sdo_ 262 sdo_ 260 sdo_ 258 sdo_ 264 sdo_ 234 sdo_ 236 sdo_ 270 sdo_ 284 sdo_ 278 sdo_ 244 sdo_ 274 sdo_ 280 sdo_ 286 sdo_ 268 sdo_ 282 sdo_ 24 sdo_ 26 sdo_ 28 sdo_ 34 sdo_ 32 sdo_ 30 sdo_ 36 sdo_ 38 sdo_ 40 sdo_ 42 sdo_ 44 sdo_ 46 sdo_ 48 sdo_ 50 sdo_ 52 sdo_ 54 sdo_ 56 sdo_ 58 sdo_ 60 sdo_ 4 sdo_ 6 sdo_ 8 sdo_ 70 sdo_ 76 sdo_ 90 sdo_ 62 sdo_ 64 sdo_ 66 sdo_ 68 sdo_ 72 sdo_ 74 sdo_ 80 sdo_ 78 sdo_ 82 sdo_ 84 sdo_ 86 sdo_ 88 sdo_ 96 sdo_ 94 sdo_ 92 sdo_ 98 sdo_ 3 sdo_ 31 sdo_ 33 sdo_ 35 sdo_ 37 sdo_ 39 sdo_ 41 sdo_ 43 sdo_ 45 sdo_ 47 sdo_ 49 sdo_ 51 sdo_ 53 sdo_ 55 sdo_ 57 sdo_ 59 sdo_ 5 sdo_ 7 sdo_ 9 sdo_ 61 sdo_ 63 sdo_ 65 sdo_ 67 sdo_ 69 sdo_ 71 sdo_ 73 sdo_ 75 sdo_ 77 sdo_ 79 sdo_ 81 sdo_ 83 sdo_ 85 sdo_ 87 sdo_ 89 sdo_ 91 sdo_ 93 sdo_ 95 sdo_ 97 sdo_ 99 sdo_ 0 sdo_ 1 sdo_ 10 sdo_ 100 sdi_ 0 sdi_ 100 sdi_ 104 sdi_ 108 sdi_ 112 sdi_ 116 sdi_ 120 sdi_ 124 sdi_ 128 sdi_ 103 sdi_ 107 sdi_ 11 sdi_ 111 sdi_ 115 sdi_ 119 sdi_ 12 sdi_ 123 sdi_ 127 sdi_ 132 sdi_ 136 sdi_ 140 sdi_ 144 sdi_ 148 sdi_ 131 sdi_ 135 sdi_ 139 sdi_ 143 sdi_ 147 sdi_ 15 power ground input output digital control legend: sdi_ 152 sdi_ 156 sdi_ 160 sdi_ 164 sdi_ 168 sdi_ 172 sdi_ 176 sdi_ 180 sdi_ 16 sdi_ 184 sdi_ 188 sdi_ 192 sdi_ 196 sdi_ 200 sdi_ 151 sdi_ 155 sdi_ 159 sdi_ 163 sdi_ 167 sdi_ 7 sdi_ 171 sdi_ 175 sdi_ 179 sdi_ 183 sdi_ 187 sdi_ 19 sdi_ 191 sdi_ 195 sdi_ 199 sdi_ 20 sdi_ 204 sdi_ 208 sdi_ 212 sdi_ 216 sdi_ 220 sdi_ 224 sdi_ 228 sdi_ 232 sdi_ 236 sdi_ 240 sdi_ 203 sdi_ 207 sdi_ 215 sdi_ 219 sdi_ 223 sdi_ 227 sdi_ 231 sdi_ 235 sdi_ 239 sdi_ 23 sdi_ 24 sdi_ 244 sdi_ 248 sdi_ 252 sdi_ 256 sdi_ 260 sdi_ 264 sdi_ 268 sdi_ 272 sdi_ 276 sdi_ 280 sdi_ 284 sdi_ 28 sdi_ 243 sdi_ 247 sdi_ 251 sdi_ 259 sdi_ 263 sdi_ 267 sdi_ 271 sdi_ 275 sdi_ 279 sdi_ 287 sdi_ 27 sdi_ 3 sdi_ 31 sdi_ 35 sdi_ 43 sdi_ 47 sdi_ 51 sdi_ 55 sdi_ 59 sdi_ 63 sdi_ 67 sdi_ 71 sdi_ 75 sdi_ 79 sdi_ 83 sdi_ 87 sdi_ 91 sdi_ 95 sdi_ 99 sdi_ 4 sdi_ 8 sdi_ 32 sdi_ 36 sdi_ 60 sdi_ 80 sdi_ 44 sdi_ 48 sdi_ 40 sdi_ 52 sdi_ 64 sdi_ 68 sdi_ 72 sdi_ 76 sdi_ 84 sdi_ 88 sdi_ 92 sdi_ 96 sdo_ 105 sdo_ 101 sdo_ 102 sdo_ 103 sdo_ 104 sdo_ 106 sdo_ 107 sdo_ 112 sdo_ 109 sdo_ 11 sdo_ 110 sdo_ 111 sdo_ 108 sdo_ 113 sdo_ 114 sdo_ 115 sdo_ 116 sdo_ 117 sdo_ 118 sdo_ 119 sdo_ 12 sdo_ 120 sdo_ 121 sdo_ 122 sdo_ 123 sdo_ 124 sdo_ 125 sdo_ 126 sdo_ 127 sdo_ 128 sdo_ 129 sdo_ 13 sdo_ 130 sdo_ 131 sdo_ 132 sdo_ 133 sdo_ 134 sdo_ 135 sdo_ 136 sdo_ 137 sdo_ 154 sdo_ 139 sdo_ 14 sdo_ 144 sdo_ 141 sdo_ 142 sdo_ 143 sdo_ 140 sdo_ 138 sdo_ 148 sdo_ 145 sdo_ 147 sdo_ 149 sdo_ 15 sdo_ 151 sdo_ 153 sdo_ 155 sdo_ 157 sdo_ 159 sdo_ 146 sdo_ 152 sdo_ 170 sdo_ 160 sdo_ 158 sdo_ 17 sdo_ 19 sdo_ 21 sdo_ 23 sdo_ 25 sdo_ 27 sdo_ 161 sdo_ 163 sdo_ 165 sdo_ 167 sdo_ 169 sdo_ 171 sdo_ 173 sdo_ 175 sdo_ 177 sdo_ 179 sdo_ 156 sdo_ 162 sdo_ 164 sdo_ 166 sdo_ 168 sdo_ 150 sdo_ 176 sdo_ 174 sdo_ 172 sdo_ 194 sdo_ 16 sdo_ 18 sdo_ 181 sdo_ 183 sdo_ 185 sdo_ 187 sdo_ 189 sdo_ 191 sdo_ 193 sdo_ 195 sdo_ 197 sdo_ 199 sdo_ 180 sdo_ 182 sdo_ 184 sdo_ 202 sdo_ 192 sdo_ 222 sdo_ 188 sdo_ 178 sdo_ 196 sdo_ 198 sdo_ 3 sdo_ 5 sdo_ 7 sdo_ 9 sdo_ 2 sdo_ 20 sdo_ 200 sdo_ 201 sdo_ 203 sdo_ 205 sdo_ 207 sdo_ 209 sdo_ 211 sdo_ 213 sdo_ 215 sdo_ 217 sdo_ 219 sdo_ 221 sdo_ 223 sdo_ 225 sdo_ 227 sdo_ 229 sdo_ 218 sdo_ 220 sdo_ 206 sdo_ 208 sdo_ 226 sdo_ 212 sdo_ 230 sdo_ 216 sdo_ 186 sdo_ 224 sdo_ 190 sdo_ 256 sdo_ 214 sdo_ 228 sdo_ 22 sdo_ 231 sdo_ 233 sdo_ 235 sdo_ 237 sdo_ 239 sdo_ 241 sdo_ 243 sdo_ 245 sdo_ 247 sdo_ 249 sdo_ 251 sdo_ 253 sdo_ 255 sdo_ 257 sdo_ 259 sdo_ 246 sdo_ 232 sdo_ 266 sdo_ 204 sdo_ 238 sdo_ 252 sdo_ 210 sdo_ 276 sdo_ 242 sdo_ 248 sdo_ 250 sdo_ 240 sdo_ 254 sdo_ 272 sdo_ 262 sdo_ 24 sdo_ 26 sdo_ 261 sdo_ 263 sdo_ 265 sdo_ 267 sdo_ 269 sdo_ 271 sdo_ 273 sdo_ 275 sdo_ 277 sdo_ 279 sdo_ 281 sdo_ 283 sdo_ 285 sdo_ 287 sdo_ 260 sdo_ 258 sdo_ 264 sdo_ 234 sdo_ 236 sdo_ 270 sdo_ 284 sdo_ 278 sdo_ 244 sdo_ 274 sdo_ 280 sdo_ 286 sdo_ 268 sdo_ 282 sdo_ 28 sdo_ 31 sdo_ 33 sdo_ 35 sdo_ 37 sdo_ 39 sdo_ 41 sdo_ 43 sdo_ 45 sdo_ 47 sdo_ 49 sdo_ 51 sdo_ 53 sdo_ 55 sdo_ 57 sdo_ 59 sdo_ 61 sdo_ 63 sdo_ 65 sdo_ 67 sdo_ 69 sdo_ 71 sdo_ 73 sdo_ 75 sdo_ 77 sdo_ 79 sdo_ 81 sdo_ 83 sdo_ 85 sdo_ 87 sdo_ 89 sdo_ 91 sdo_ 93 sdo_ 95 sdo_ 97 sdo_ 99 sdo_ 34 sdo_ 32 sdo_ 30 sdo_ 36 sdo_ 38 sdo_ 40 sdo_ 42 sdo_ 44 sdo_ 46 sdo_ 48 sdo_ 50 sdo_ 52 sdo_ 54 sdo_ 56 sdo_ 58 sdo_ 60 sdo_ 62 sdo_ 64 sdo_ 66 sdo_ 68 sdo_ 70 sdo_ 72 sdo_ 74 sdo_ 80 sdo_ 78 sdo_ 76 sdo_ 82 sdo_ 84 sdo_ 86 sdo_ 88 sdo_ 90 sdo_ 96 sdo_ 94 sdo_ 92 sdo_ 98 sdo_ 4 sdo_ 6 sdo_ 8 ay ba bb bc bd be bf bg bh bj a b c d e f g h j k l m n p r t u v w y aa ab ac ad ae af ag ah aj ak al am an ap ar at au av aw ay ba bb bc bd be bf bg bh bj ext _pg1 ext _pg1 sdi_ 8 ext _pg0 sdi_ 211 sdi_ 211 gnd sdi_ 255 sdi_ 255 sdi_ 287 sdi_ 283 sdi_ 283 vcc_ 25_a vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 vcc_ out2 sdo_ 29 sdo_ 29 vcc_ 25_a vddio _d vddio _d vdd_ 18 vddio _d vddio _d vddio _d vddio _d vddio _d vddio _d vddio _d vddio _d vddio _d vddio _d vdd_ 18 vdd_ 18 vdd_ 18 vcc _in1 vcc _in1 vcc _in1 gnd gnd vddio _d vdd_ 18 vcc _in1 vcc _in1 vcc _in1 vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc _in2 vcc _in2 vcc _in2 vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a gnd vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a gnd vdd_ 18 vdd_ 18 vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vdd_ 18 vdd_ 18 vcc _in1 vcc _in1 vcc _in1 vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a gnd vcc_ 25_ ref_ clk vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc _in1 vcc _in1 vcc _in1 vcc _in1 vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc _in2 vcc _in2 vcc _in2 vcc _in2 vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc _in1 vcc _in1 vcc _in1 vcc _in1 vdd_ 18 vdd_ 18 vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vdd_ 18 vdd_ 18 vcc _in2 vcc _in2 vcc _in2 vcc _in2 lf2 gnd vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a lf0 gnd vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a vcc_ 25_a sdo_ 246 ext _pg0 rsv _dnc mon1 gnd gnd gnd mon0 mon0 rsv _dnc rsv _dnc rsv _dnc rsv _dnc rsv _dnc rsv _dnc rsv _dnc ext _clk1 ext_ clk_ digital ext _clk2 ext clk0 rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io rsv _io sdi_ 56 rsv _io sdi_ 56 reserved rsv _dnc
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 6 of 47 proprietary & confidential www.semtech.com 1.2 ball descriptions table 1-1 shows the descriptions for selected gx 3190 balls. for a comprehensive list of balls from the gx3190 crosspoint family, please refer to gx3290 (and family) crosspoint ball guide . table 1-1: ball descriptions ball # ball name i/o description serial interface i/o an1 6sc lk i s erial host interfa c e c lo c k. if unuse d , tie to g roun d . an17 s din i s erial host interfa c e data input. if unuse d , tie to g roun d . an18 s dout o s erial host interfa c e data output. leave n c if not use d . an19 s _ cs i s erial host interfa c e c hip s ele c t. a c tive-low. must b e tie d low when ho s t_ s /p is set low. parallel interface i/o al23 p_ cs i parallel host interfa c e c hip sele c t. a c tive-low. must b e tie d low when ho s t_ s /p is set hi g h. al24 p_r/w i s ele c ts b etween rea d an d write operations on the parallel host interfa c e. hi g h = rea d , low = write. if unuse d , tie to g roun d . al25 p_ad s i a dd ress an d data s tro b e. s tro b e si g nal for lat c hin g the a dd ress an d d ata into the c hip. s ee s e c tion 4.12.1 for timin g information. if unuse d , tie to g roun d . am27 - am1 6 p_add[11:0] i a dd ress b us for the parallel interfa c e. if unuse d , tie to g roun d . an35 - an20 p_dat[15:0] i/o bi- d ire c tional d ata b us for the parallel interfa c e. if p_ cs is hi g h, these pins are c onfi g ure d as inputs. leave n c if parallel interfa c e is not use d . if unuse d , tie to g roun d . general i/o an15 ho s t_ s /p i host interfa c e s ele c t pin. s ele c ts b etween serial an d parallel host interfa c es. s erial host interfa c e is ena b le d when hi g h, parallel host interfa c e is ena b le d when low. must assert re s et after c han g in g this pin. am35 - am28 update_en [7:0] i up d ate s tro b es use d to up d ate the swit c h matrix c onfi g uration (see s e c tion 4.5 ). if unuse d , weak pull- d own to g roun d . ar33 por_dft i this pin d isa b les the power on reset c ir c uitry when hi g h. weak internal pull- d own. leave n c if not use d . ar35 re s et i a c tive-low reset for entire c hip (see s e c tion 4.11 for timin g d etails). weak internal pull-up. leave n c if not use d . test interface al17 t c ki j ta g test c lo c k. weak pull-up if not use d . al18 tm s i j ta g test mo d e start. weak pull-up if not use d . al19 tdo o j ta g test d ata out. leave n c if not use d . al20 tdi i j ta g test d ata in. weak pull-up if not use d .
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 7 of 47 proprietary & confidential www.semtech.com filtering r17 ldo2 ? ldo filter c apa c itor for v c o_2. c onne c t throu g h a 220nf c apa c itor to g roun d . s ee fi g ure 3-3 for c onfi g uration. r33 ldo0 ? ldo filter c apa c itor for v c o_0. c onne c t throu g h a 220nf c apa c itor to g roun d . s ee fi g ure 3-3 for c onfi g uration. t17 lf2 ? pll loop filter c apa c itor for v c o_2. s ee fi g ure 3-3 for c onfi g uration. leave n c if not use d . t33 lf0 ? pll loop filter c apa c itor for v c o_0. s ee fi g ure 3-3 for c onfi g uration. leave n c if not use d . ah17 lf1 ? pll loop filter c apa c itor for v c o_1. s ee fi g ure 3-3 for c onfi g uration. leave n c if not use d . ah33 lf_di g ital ? pll loop filter c apa c itor for v c o_di g ital. c onne c t throu g h a 47nf c apa c itor to g roun d . s ee fi g ure 3-3 for c onfi g uration. a j 17 ldo1 ? ldo filter c apa c itor for v c o_1. c onne c t throu g h a 220nf c apa c itor to g roun d . s ee fi g ure 3-3 for c onfi g uration. a j 33 ldo_di g ital ? ldo filter c apa c itor for v c o_di g ital. c onne c t throu g h a 220nf c apa c itor to g roun d . s ee fi g ure 3-3 for c onfi g uration. crystal oscillator ae35 ref_ c lk_in ? c onne c t a 27mhz c rystal b etween this b all an d ref_ c lk_out. s ee s e c tion 4.9 an d fi g ure 3-5 . af35 ref_ c lk_out ? c onne c t a 27mhz c rystal b etween this b all an d ref_ c lk_in. s ee s e c tion 4.9 an d fi g ure 3-5 . leave n c if not use d . external clocks r15 ext_ c lk2 i external c ml c lo c k for pattern g enerator 1 (true). leave n c if not use d . r35 ext_ c lk0 i external c ml c lo c k for pattern c he c ker 0 (true). leave n c if not use d . t15 ext_ c lk2 iexternal c ml c lo c k for pattern g enerator 1 ( c omplement). leave n c if not use d . t35 ext_ c lk0 iexternal c ml c lo c k for pattern c he c ker 0 ( c omplement). leave n c if not use d . ah15 ext_ c lk1 iexternal c ml c lo c k for pattern c he c ker 1 ( c omplement). leave n c if not use d . ah35 ext_ c lk _di g ital i external c ml c lo c k for pattern transmitter 0/di g ital c ore ( c omplement). leave n c if not use d . a j 15 ext_ c lk1 i external c ml c lo c k for pattern c he c ker 1 (true). leave n c if not use d . a j 35 ext_ c lk _di g ital i external c ml c lo c k for pattern transmitter 0/di g ital c ore (true). leave n c if not use d . bh45 di g ital_ c l_ s el i c lo c k sele c t b etween external c lo c k sour c e (ext_ c lk_di g ital) an d internal v c o (v c o_di g ital). this pin has a weak internal pull-up, an d shoul d b e pulle d low to use an external c lo c k. table 1-1: ball descriptions (continued) ball # ball name i/o description
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 8 of 47 proprietary & confidential www.semtech.com temperature sensors e8 dtherma3 ? thermometer 3 d io d e terminals. s ee s e c tion 4.8 . leave n c if not use d . f9 dthermk3 ? thermometer 3 d io d e terminals. s ee s e c tion 4.8 . leave n c if not use d . h45 dtherma0 ? thermometer 0 d io d e terminals. s ee s e c tion 4.8 . leave n c if not use d . j 44 dthermk0 ? thermometer 0 d io d e terminals. s ee s e c tion 4.8 . leave n c if not use d . ba 6 dthermk2 ? thermometer 2 d io d e terminals. s ee s e c tion 4.8 . leave n c if not use d . bb5 dtherma2 ? thermometer 2 d io d e terminals. s ee s e c tion 4.8 . leave n c if not use d . bd41 dthermk1 ? thermometer 1 d io d e terminals. s ee s e c tion 4.8 . leave n c if not use d . be42 dtherma1 ? thermometer 1 d io d e terminals. s ee s e c tion 4.8 . leave n c if not use d . monitors a44 mon0 o s erial monitorin g output 0 ( c omplement). leave n c if not use d . a45 mon0 o s erial monitorin g output 0 (true). leave n c if not use d . b j 5mon1o s erial monitorin g output 1 (true). leave n c if not use d . b j6 mon1 o s erial monitorin g output 1 ( c omplement). leave n c if not use d . external pattern generators e1 ext_p g 1 i s erial pattern g enerator input 1 ( c omplement). leave n c if not use d . f1 ext_p g 1i s erial pattern g enerator input 1 (true). leave n c if not use d . bd49 ext_p g 0i s erial pattern g enerator input 0 (true). leave n c if not use d . be49 ext_p g 0 i s erial pattern g enerator input 0 ( c omplement). leave n c if not use d . reserved - do not connect b45, c 44, d7, e2, f3, g 4 6 , al32, al33, al34, al35, ar34, b c 4, bd47, be48, bf43, b g6 , bh5, r s v_dn c ? reserve d . do not c onne c t. sdi/sdo refer to the g x3290 (an d family) c rosspoint ball g ui d e for a d etaile d list of s di an d s do b alls. power refer to the g x3290 (an d family) c rosspoint ball g ui d e for a d etaile d list of power supply b alls. ground refer to the g x3290 (an d family) c rosspoint ball g ui d e for a d etaile d list of g roun d b alls. table 1-1: ball descriptions (continued) ball # ball name i/o description
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 9 of 47 proprietary & confidential www.semtech.com 2. electrical characteristics 2.1 absolute maximum ratings table 2-1: absolute maximum ratings parameter value s upply volta g e (vdd_18) -0.3v to +2.1v s upply volta g e (v cc _in1, v cc _in2, v cc _25_a, vdd_25, vddio_d, v cc _out1, v cc _out2, v cc _25_ref_ c lk, v cc _25_v c o0, v cc _25_v c o1, v cc _25_v c o2) -0.3v to +2.8v input volta g e ran g e -0.3 to (0.3 + min[v cc _in1, v cc _25_a])v for even num b ere d s di inputs an d ext_p g 0 -0.3 to (0.3 + min[v cc _in2, v cc _25_a])v for o dd num b ere d s di inputs an d ext_p g 1 e s d volta g e (hbm; all b alls) 1kv e s d volta g e ( c dm; all b alls) 100v s tora g e temperature ran g e -50o c to +125o c operatin g temperature ran g e0o c to 85o c s ol d er reflow temperature 245o c
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 10 of 47 proprietary & confidential www.semtech.com 2.2 recommended operating conditions table 2-2: recommended operating conditions parameter symbol min ty p max units notes operatin g power s upply v cc _25_a, v cc _25_ref_ c lk 2.375 2.5 2. 6 25 v 1 v cc _in1, v cc _in2 1.14 1.2 1.2 6 v 2 1.71 1.8 1.89 v 3 2.375 2.5 2. 6 25 v 1 v cc _out1, v cc _out2 1.14 1.2 1.2 6 v 2 1.71 1.8 1.89 v 3 2.375 2.5 2. 6 25 v 1 vdd_18 1.71 1.8 1.89 v 3 vddio_d 1.71 1.8 1.89 v 3 2.375 2.5 2. 6 25 v 1 vdd_25 2.375 2.5 2. 6 25 v 1 operatin g temperature ran g e ( c ase) t op 02585 c ? s tart-up temperature ran g e t s u -40 ? 85 c ? notes: 1. 2.5v supply. 2. 1.2v supply. 3. 1.8v supply.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 11 of 47 proprietary & confidential www.semtech.com 2.3 dc electrical characteristics table 2-3: dc electrical characteristics parameter symbol conditions min ty p max units note system power p all c hannels a c tive, v cc _in[1,2] = v cc _out[1,2] = 1.2v5%, v od = 200mv, v s di = 800mvpp d , d e-emphasis= 6 , without pattern g enerator/ c he c ker, a c - c ouple d ? 31.51 42 w 1 all c hannels a c tive, v cc _in[1,2] = v cc _out[1,2] = 1.2v5%, v od = 400mv, v s di = 800mvpp d , d e-emphasis= 6 , without pattern g enerator/ c he c ker, a c - c ouple d ? 35.94 ? w 1 all c hannels a c tive, v cc _in[1,2] = v cc _out[1,2] = 2.5v5%, v od = 800mv, v s di = 800mvpp d , d e-emphasis= 6 , without pattern g enerator/ c he c ker, a c - c ouple d ? 41.8 6 53 w 1 all c hannels a c tive, v cc _in[1,2] = v cc _out[1,2] = 2.5v5%, v od = 1200mv, v s di = 800mvpp d , d e-emphasis= 6 , without pattern g enerator/ c he c ker, a c - c ouple d ?4 6 .82 58.5 w 1 prb s g enerator/ c he c ker ? 1.8 6 ?w? power in reset mo d epre s et = 0 ? 0.5 ? w ? c urrent - v cc _25_a i cc _25_a with d e-emphasis, without pattern g enerator/ c he c ker ? 13.4 15.8 a ? without d e-emphasis, without pattern g enerator/ c he c ker ? 12.4 ? a ?
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 12 of 47 proprietary & confidential www.semtech.com c urrent - v cc _in1 i cc _in1 all inputs a c tive, v s di = 1.2vpp d , d c - c ouple d ?0.85? a 2 all inputs a c tive, v s di = 1.2vpp d , a c - c ouple d -0.2 ? 0 a 3 c urrent - v cc _in2 i cc _in2 all inputs a c tive, v s di = 1.2vpp d , d c - c ouple d ?0.85? a 2 all inputs a c tive, v s di = 1.2vpp d , a c - c ouple d -0.2 ? 0 a 3 c urrent - v cc _out1 i cc _out1 v cc _out1 = 1.2v 5%, all outputs a c tive, v od = 200mv, with de-emphasis ? 0.31 0.38 a 4 v cc _out1 = 1.2v 5%, all outputs a c tive, v od = 400mv, with de-emphasis ?0.59? a 4 v cc _out1 = 1.2v 5%, all outputs a c tive, v od = 800mv, with de-emphasis ?1.11? a 4 , 5 v cc _out1 = 2.5v 5%, all outputs a c tive, v od = 200mv, with de-emphasis ?0.33? a 4 v cc _out1 = 2.5v 5%, all outputs a c tive, v od = 400mv, with de-emphasis ?0.59? a 4 v cc _out1 = 2.5v 5%, all outputs a c tive, v od = 800mv, with de-emphasis ? 1.22 1.55 a 4 v cc _out1 = 2.5v 5%, all outputs a c tive, v od = 1200mv, with de-emphasis ?1. 6 32.13 a 4 table 2-3: dc electrical characteristics (continued) parameter symbol conditions min ty p max units note
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 13 of 47 proprietary & confidential www.semtech.com c urrent - v cc _out2 i cc _out2 v cc _out2 = 1.2v 5%, all outputs a c tive, v od = 200mv, with de-emphasis ? 0.31 0.38 a 4 v cc _out2 = 1.2v 5%, all outputs a c tive, v od = 400mv, with de-emphasis ?0.59? a 4 v cc _out2 = 1.2v 5%, all outputs a c tive, v od = 800mv, with de-emphasis ?1.11? a 4 , 5 v cc _out2 = 2.5v 5%, all outputs a c tive, v od = 200mv, with de-emphasis ?0.33? a 4 v cc _out2 = 2.5v 5%, all outputs a c tive, v od = 400mv, with de-emphasis ?0.59? a 4 v cc _out2 = 2.5v 5%, all outputs a c tive, v od = 800mv, with de-emphasis ? 1.22 1.55 a 4 v cc _out2 = 2.5v 5%, all outputs a c tive, v od = 1200mv, with de-emphasis ?1. 6 32.13 a 4 c urrent - v cc _25_ref_ c lk i cc _25 _ref_ c lk ? ? 20 40 ma ? c urrent - v cc _v c o_di g ital i cc _v c o _di g ital ?? 6 10 ma ? c urrent - v cc _25_v c o0 i cc _25 _v c o0 ?? 6 10 ma ? c urrent - v cc _25_v c o1 i cc _25 _v c o1 ?? 6 10 ma ? c urrent - v cc _25_v c o2 i cc _25 _v c o2 ?? 6 10 ma ? c urrent - vdd_18 idd_18 vdd_18 = 1.8v5% ? 2 6 0 750 ma ? c urrent - vdd_25 idd_25 vdd_25 = 2.5v5% ? 20 40 ma ? c urrent - vddio_d iddio_d vddio_d = 1.8v5%, all inputs a c tive (15pf loa d ) ? 50 100 ma ? vddio_d = 2.5v5%, all inputs a c tive (15pf loa d ) ? 70 140 ma ? table 2-3: dc electrical characteristics (continued) parameter symbol conditions min ty p max units note
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 14 of 47 proprietary & confidential www.semtech.com high-speed inputs/outputs s erial input termination ? differential ? 100 ? 6 s in g le-en d e d ?50? s erial output termination ? differential ? 100 ? ? s erial input c ommon mo d e volta g e v i c m v cc _in[1,2] = 1.2v 5% , v cc _in[1,2] = 1.8v 5% , v cc _in[1,2] = 2.5v 5% , terminate d to v cc _in[1,2] v cc _in [1,2] - ( v s di _max /4) ? v cc _in [1,2] - ( v s di _min /4) v 7 , 8 , 9 , 10 s erial output c ommon mo d e volta g e v o c m v cc _out[1,2] = 1.2v 5% , v cc _out[1,2] = 1.8v 5%, v cc _out[1,2] = 2.5v 5% v cc _out [1,2] - ( v od _ max/4) ? v cc _out [1,2] - ( v od _ min/4) v? host interface lo g i c hi g h volta g e on d i g ital input pins v ih ? 0.7 x vddio_d ? vddio_d + 0.3 v 11 lo g i c low volta g e on d i g ital input pins v il ?-0.3? 0.3 x vddio_d v 11 output lo g i c low v ol i ol = 2ma, 2.5v operation ??0.7v 11 i ol = 2ma, 1.8v operation ? ? 0.45 v 11 output lo g i c hi g h v oh i oh = -2ma, 2.5v operation 1.7 ? ? v 11 i oh = -2ma, 1.8 operation 1.35 ? ? v 11 notes: 1. total maximum power is lower than indivi dual maximum currents multiplied by indivi dual maximum supply volt ages because the in dividual maximum currents can not occur simultaneous ly (they occur at different conditions). 2. the icc_in1 and icc_in2 curren t flows out of the gx3190 and into the input signal source, and is subject to variability in th at source. some variability in input signal source current draw should be assumed, and up to 15% is possible. 3. when the common mode termination points for ac-coupled inputs ar e connected to vcc_in1, vcc_in 2, the gx3190 equalizer input b ias currents can lead to current flowing out of the vcc_in1, vcc_in2 supply pins. 4. currents apply for output dc-coupled applications. when ac- coupled, the current draw may be increased by up to 2x. 5. for dc-coupled a pplications only. 6. input termination is selectable between 100 differential and 50 single-ended. see section 3. input/output e quivalent circuits . 7. dc common mode current into/out of each eq input differential pair should not exceed 14ma, and the current into/out of each h alf of the differential pair should not exceed 14ma. 8. no more than vcc_in[1,2] - v sdi_actual /4. 9. where it is understood that v cc_in[1,2] have a 5% tolerance. 10.in no case should either side of the inpu t differential pair be allo wed to rise above vcc_25_a + 0.3v or fall below -0.3v. 11.specifications relate to all host interface pins. table 2-3: dc electrical characteristics (continued) parameter symbol conditions min ty p max units note
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 15 of 47 proprietary & confidential www.semtech.com 2.4 ac electrical characteristics table 2-4: ac electrical characteristics parameter symbol conditions min ty p max units notes system s erial input data rate dr s do ???3.5 gb /s ? propa g ation delay t p ??? 6 ns 1 propa g ation delay differen c e t p between any two c hannels ??5.5ns 1 high-speed inputs/outputs output s wit c h time usin g up d ate ena b le s tro b es ? ? 0.9 ? 1.8 s 2 input volta g e s win g v s di ? 100 ? 1200 mvpp d ? output volta g e s win g v od v cc _out[1,2] = 1.2v5%, output = 200mvpp d 150 225 300 mvpp d ? v cc _out[1,2] = 1.2v5%, output = 400mvpp d 300 450 6 00 mvpp d ? v cc _out[1,2] = 1.2v5%, output = 800mvpp d 6 00 900 1200 mvpp d 3 v cc _out[1,2] = 1.8v5%, output = 200mvpp d 150 225 300 mvpp d ? v cc _out[1,2] = 1.8v5%, output = 400mvpp d 300 450 6 00 mvpp d ? v cc _out[1,2] = 1.8v5%, output = 800mvpp d 6 00 900 1200 mvpp d ? v cc _out[1,2] = 2.5v5%, output = 200mvpp d 150 225 300 mvpp d ? v cc _out[1,2] = 2.5v5%, output = 400mvpp d 300 450 6 00 mvpp d ? v cc _out[1,2] = 2.5v5%, output = 800mvpp d 6 00 900 1200 mvpp d ? v cc _out[1,2] = 2.5v5%, output = 1200mvpp d 1000 1350 1700 mvpp d ? output rise/fall time t r /t f all output swin g s. 20% to 80%. ? ? 150 ps ? duty c y c le distortion ? all d ata rates, all output swin g s. -50 ? +50 ps ? a dd itive j itter ? all inputs a c tive, peak-to-peak (prb s 31) ?? 6 0 ps p-p ? input tra c e equalization ? ? 0 ? 12 d b 4 output de-emphasis ? ran g e 0 ? 11.2 d b 4 maximum s ettin g 9?? d b
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 16 of 47 proprietary & confidential www.semtech.com host interface parallel rate of operation ? ? 0.1 ? 112.5 mop/s 5 , 6 , 7 s erial interfa c e operatin g s pee d ? ? 0.1 ? 25 mhz 5 , 8 notes: 1. see section 4.4 for more details. 2. this parameter is the time it takes for the outputs to change to a new swit ch matrix configuration when the corresponding str obe signal assigned to that output is asserted. 3. dc-coupled. 4. selectable, maximum gain occurs at 3gb/s (or 1.5ghz). 5. specifications relate to all host interface pins. 6. millions of ope rations per second. 7. for detailed timing specifications, see section 4.12.1 . 8. for detailed timing specifications, see section 4.12.2 . table 2-4: ac electrical characteristics (continued) parameter symbol conditions min ty p max units notes
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 17 of 47 proprietary & confidential www.semtech.com 3. input/output equivalent circuits note: please refer to the following supplementary documents: crosspoint design guide and eb-gx3290 schematics, pcb layo ut and bill of materials . fi g ure 3-1: equalizer input equivalent c ir c uit (in c lu d es the ext_p g 0 & ext_p g 1 inputs) fi g ure 3-2: tra c e driver output equivalent c ir c uit (in c lu d es the mon0 & mon1 outputs) note: the mon0 and mon1 outputs are terminated to the vcc_25_a supply. vcc_in[1,2] vcc_25_a sdi[0:287] 50 50 eq_termination[287:0] hiz_accm hiz_accm sdi[0:287] vcc_25_a vcc_out[1,2] 50 50 vcc_out[1,2] vcc_out[1,2] main delayed sdo[0:287] sdo[0:287]
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 18 of 47 proprietary & confidential www.semtech.com fi g ure 3-3: require d c onne c tions for v cc _v c o_di g ital, v cc _25_v c o0, v cc _25_v c o1, v cc _25_v c o2, lf_di g ital, lf0, lf1, lf2, ldo_di g ital, ldo0, ldo1 an d ldo2 vcc_25_a vcc_vco_digital 10nf 1f 10f 267 vcc_25_a 10nf 1f 10f 267 vcc_vco_digital vcc_25_vco0 vcc_25_vco1 vcc_25_vco2 47nf lf_digital 0 220nf ldo_digital 47nf lf0 lf1 220nf ldo_digital ldo0 ldo1 ldo2 47nf lf_digital lf2 0 vcc_25_vco0 vcc_25_vco1 vcc_25_vco2 lf0 lf1 lf2 220nf ldo0 ldo1 ldo2 note 1 : each of the vcc_vco_digital, vcc_vco0, vcc_vco1, and vcc_vco2 pins re q uire an independent rc network. note 2: the lf_digital and lf2 pins each re q uire an independent rc network. note 3: the lf0 and lf1 pins each re q uire an independent capacitor to ground. note 4: each of the ldo_digital, ldo0, ldo1, and ldo2 pins re q uire an independent capacitor to ground. note 5: vcc_vco_digital, lf_digital and ldo_digital used for pattern generator tx0, digital communication (gspi and appi), and the int ernal temperature adc for jnctn_temp_1. vcc_vco_digital, lf_digital and ldo_digital must always be connected. note 6 : vcc_25_vco0, lf0, ldo0 used for pattern checker rx0 and the internal temperature adc for jnctn_temp_0. if vcc_25_vco0, lf0, and ldo0 are not connected, pattern checker rx0 and the internal temperature adc for jnctn_temp_0 will not operate. note 7: vcc_25_vco1, lf1, ldo1 used for pattern checker rx1 and the internal temperature adc for jnctn_temp_2. if vcc_25_vco1, lf1, and ldo1 are not connected, pattern checker rx1 and the internal temperature adc for jnctn_temp_2 will not operate. note 8 : vcc_25_vco2, lf2, ldo2 used for pattern generator tx1 and the internal temperature adc for jnctn_temp_3. if vcc_25_vco2, lf2, and ldo2 are not connected, pattern generator tx1 and the internal temperature adc for jnctn_temp_3 will n ot operate. if the internal temperature adcs, pattern generators, and checkers are used, these connections are re q uired. if the internal temperature adcs, pattern generators, and checkers are not used, only these connections are re q uired.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 19 of 47 proprietary & confidential www.semtech.com fi g ure 3-4: prb s g enerator/ c he c ker c lo c k s ele c tion fi g ure 3-5: c rystal os c illator ref_clk_in ref_clk_out xtal osc. cmu /2 ext_clk_digital ext_clk_digital digital_cl_sel 0 1 pattern tx0 ref_clk_in ref_clk_out cmu /2 ext_clk0 ext_clk0 0 1 pattern rx0 cmu /2 0 1 cmu /2 0 1 note: the clock used to drive pattern generator tx0 is also used to derive the clock timing for the digital core. therefore, gspi/appi interface timing and update timing w ill track the external clock fre q uency if one is selected from the ext _clk_digital/ext_clk_digital pins for pattern generator tx0. xtal osc. ref_clk_in ref_clk_out ext_clk1 ext_clk1 ref_clk_in ref_clk_out ext_clk2 ext_clk2 xtal osc. xtal osc. pattern rx1 pattern tx1 bist_rx_5 0x83c b4 bist_rx_5 0x83c b6 bist_tx_0 0x823 b0 ref_clk_in ref_clk_out 1m 27mhz c2 c1 ref_clk_in ref_clk_out 27mhz oscillator using a crystal using a single-ended 27mhz oscillator note: the value of the c1 and c2 load capacitors are dependent on the chosen crystal.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 20 of 47 proprietary & confidential www.semtech.com 4. detailed description 4.1 serial data input each of the gx3190 sdi inpu ts provide on-chip 100 differential terminations. each is compatible with input diffe rential amplitudes from 1 00mvppd to 1200mvppd, and input signal sources having cml outputs referre d to dc supplies of 1.2v, 1.8v or 2.5v. note that for ac-coupled inputs, the recommended supply voltage for vcc_in1 and vcc_in2 is 1.8v. each of the 146 sdi input channels include frequenc y domain equalization, independently-programmable to one of four levels, to compensate from 0 to 47 inches (119 cm) of fr4 trace at 3gb/s. the boos t at the 1.5ghz nyqu ist frequency, and recommended trace length range, are shown under eq_boo s t[287:0] , ext_p g 0_eq_boo s t , ext_p g 1_eq_boo s t in table 4-1 . see figure 3-1 . each input can be powered-down independently using the corresponding eq_powerdown[287:0] or ext_p g 0_eq_powerdown or ext_p g 1_eq_powerdown bit. to accommodate input signal sources with 1.2v supp lies and 1200mvppd signal amplitudes, the input common mode point should be terminated to the respective vcc_in1 or vcc_in2 supply. the common mode termination connection to the respective vcc_in1 or vcc_in2 supply of each input can be independently controlled using the eq_termination[287:0] or ext_p g 0_eq_termination or ext_p g 1_eq_termination bit (see figure 3-1 and table 4-1 ). note 1: when the hiz_a cc m bit is set (register address 0x400h bit 0 ), inputs with their common mode termination not connected to vcc_in1 or vcc_in2 are connected to an internal commo n mode bias. when an input eq is powered-down, its common mode termination is automatically disconnected from the corresponding vcc_in1 or vcc_in2. for each of the inputs, there are control parameters (register address 0x401h to 0x522h ). see table 4-1 below. note 2: the ext_p g 01_ s our c e_pin_prb s b and ext_p g 1_ s our c e_pin_prb s b bits in the te s t_ s etup register must be set to connect the ext_pg0 and ext_pg1 pins to the matrix. table 4-1: serial data input eq_boost[287:0], ext_pg0_eq_boost and ext_pg1_eq_boost bits 1:0 (binary) boost applied (@ nominal 1.5ghz) 00 0 d b b oost 0? to 6 ? (15 c m) tra c e 01 3.5 d b b oost 6 ? (15 c m) to 1 6 ? (40 c m) tra c e 10 7. 6d b b oost 1 6 ? (40 c m) to 35? (89 c m) tra c e
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 21 of 47 proprietary & confidential www.semtech.com 4.2 serial data output each of the gx3190 sdi outp uts have two on-chip 50 single-ended terminations, and can be programmed to output differential amplitudes of 200mvppd, 400mvppd or 800mvppd when the correspond ing vcc_out1 or vcc_out2 is connected to either 1.2v or 1.8v, or 200mvppd, 400mvppd, 800mvppd, or 1200mvppd when the corresponding vcc_out1 or vcc_out2 is connected to 2.5v. the selection of the output swing is made using the corresponding output_ s win g _ s et[287:0] , mon0_output_ s win g _ s et or mon1_output_ s win g _ s et bits, shown in table 4-3 . if the hi g h_op_v bit is set when either the vcc_out1 or vcc_out2 supplies are 1.2v or 1.8v, the 800mvppd swing setting is no longer valid for that output bank. swing settings for an output bank connected to a 2.5v supply are unaffected. 11 12 d b b oost 35? (89 c m) to 47? (119 c m) tra c e eq_termination[287:0], ext_pg0_eq_termination and ext_pg1_eq_termination bits 3:3 input termination common mode point switch to vcc_in_1, vcc_in_2 0open (see fi g ure 3-1 ) 1 c lose d (see fi g ure 3-1 ) eq_powerdown[287:0], ext_pg0_eq_powerdown and ext_pg1_eq_powerdown bits 4:4 equalizer power 0on 1off table 4-1: serial data input (continued) eq_boost[287:0], ext_pg0_eq_boost and ext_pg1_eq_boost bits 1:0 (binary) boost applied (@ nominal 1.5ghz) table 4-2: high_op_v swing selection high_op_v = 0 high_op_v = 1 note vcc_outx supply voltage (v) valid output swing selection (mvppd) valid output swing selection (mvppd) 1.2 200, 400, 800 200, 400 1 1.8 200, 400, 800 200, 400 ?
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 22 of 47 proprietary & confidential www.semtech.com each of the 290 sdi output channels provide independe ntly programmable de-emphasis, to compensate from 0 to 47 in ches (119 cm) of fr4 trace at 3gb/s. the selection of the amount of output de-emphasis is made using the corresponding output_deempha s i s [287:0] , mon0_output_deempha s i s or mon1_output_deempha s i s bits, shown in table 4-3 . each output can be independently powered-down by the setting of the corresponding bit: a c tive_power_down[287:0] , dynami c _power_down[287:0] together with the assigned strobe, mon0_power_down , or mon1_power_down . the polarity of the signal at each output can be independently inverted by setting the corresponding bit: a c tive_ s i g nal_invert[287:0] , dynami c _ s i g nal_invert[287:0] together with the assigned strobe, mon0_ s i g nal_invert , or mon1_ s i g nal_invert . 2.5 200, 400, 800 200, 400, 800, 1200 2 notes: 1. for an 800mvppd output swing when the corresponding vcc_out1 or vcc_out2 is connected to 1.2v, the output must be dc-coupled to a receiving device terminated to 1.2v. 2. when vcc_out1 or vcc_out2 is set to 2.5v , the high_op_v bit must be set to enable 1200mvppd swing selection. table 4-3: serial data output output_swing_set[287:0], mon0_output_swing_set and mon1_output_swing_set bits 2:0 (binary) output swing 000 200mvpp d 001 400mvpp d 011 800mvpp d 110 1200mvpp d 111 reserve d . do not use. output_deemphasis[287:0], mon0_output_deemphasis and mon1_output_deemphasis bits 5:3 (binary) level of de-emphasis 000 off 100 12? (30 c m) nominal 101 24? ( 6 0 c m) nominal 110 3 6 ? (90 c m) nominal 111 48? (120 c m) nominal table 4-2: high_op_v swing selection (continued) high_op_v = 0 high_op_v = 1 note vcc_outx supply voltage (v) valid output swing selection (mvppd) valid output swing selection (mvppd)
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 23 of 47 proprietary & confidential www.semtech.com 4.3 crosspoint switch matrix operation the crosspoint switch matrix routes the serial digital input signals (sdi[0:287]/sdi [0:287], ext_pg0/ext_pg0 or ext_pg1/ext_pg1 ) to one or more serial digital outputs (sdo[0:287]/sdo [0:287], mon0/mon0 or mon1/mon1 ). the matrix is configured on a per output basis. each serial digital output can be configured to accept a signal from one serial digital input. multiple serial digital outputs can accept input from the same serial digital input. updates to the switch matrix take place as soon as they are written to the host interface when controlling the device through the active configuration and status registers. these registers are the a c tive[287:0] , mon0 , and mon1 registers found in section 2 of the crosspoint (gx3290 and family) reference manual (for csrs) document. before the a c tive[287:0] , mon0 , and mon1 registers at addresses 0x200h through 0x321h can be directly used to update the crosspoint switch matrix, an in itialization procedure is required. one of the update_en[7:0] pins needs be toggled from a low state to a high state, and back to a low state again. alternatively, set the s oftware_update_enable bit in the c ontrol_ s etup register at address 0xa00h to a valu e of 1, and then toggle one of the s oft_update_en[7:0] bits in the s oft_update_ c ontrol register at address 0xa01h from a value of 0 to a value of 1, and then back to a value of 0. if the a c tive[287:0] , mon0 , and mon1 registers are not being directly written by the system controller, this procedure is not required. reading from the a c tive[287:0] , mon0 , and mon1 registers will work regardless of whether or not the above procedure is executed. updating the crosspoint switch matrix using the dynami c [287:0] registers (discussed below) does not require the initialization procedure described above. the switch matrix can also be updated using double-buffering when controlling the device through the dynamic configuration and status registers. these registers are dynami c [287:0] in section 1 of the crosspoint (gx3290 and family) reference manual (for csrs) document. active_signal_i nvert[287:0], dynamic_signal_invert[287:0], mon0_signal_invert or mon1_signal_invert status 0 not inverte d 1 inverte d active_power_down[287:0], dynamic_power_down[287:0], mon0_power_down or mon1_power_down status 0on 1off table 4-3: serial data output (continued)
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 24 of 47 proprietary & confidential www.semtech.com when using dynamic configuration, updates to the switch matrix are first written to the dynami c [287:0] registers where they are held unti l the corresponding update strobe signal, selected using the update_ s ele c t[287:0] bits in the dynami c [287:0] registers, changes st ate from low-to-high. the source for the update strobes can either be via external pins (update_en[7:0]) or register bits ( s oft_update_en[7:0] ) as selected by the setting of the s oftware_update_enable bit in the c ontrol_ s etup register. setting the s oftware_update_enable bit low causes the device to use the external update_en[7:0] pins as update strobes for the switch matrix. setting the s oftware_update_enable bit high causes the device to use the s oft_update_en[7:0] bits as update strobes for the switch matrix. see section 6 of the crosspoint (gx3290 an d family) reference manual (for csrs) document. when the selected update strobe signal (or bit) transitions from low-to-high, the state of all the outputs configured to respond to th at update strobe signal (or bit) are updated at that time. regardless of which register set is used to configure the switch matrix, the current configuration of the matrix is always available by reading back the a c tive[287:0] registers. note: the mon0 and mon1 outputs can not be powered up/down, switched, or polarity inverted dynamically (dynamic configuration). they can only be configured in the active configuration mode described above using the se ttings in registers 0x320h and 0x321h, respectively. also, the mon0 and mon1 outputs are terminated to the vcc_25_a supply. 4.4 propagation delay the propagation delay is dependent on the path that the signal takes through the device. although the delay difference from the shortest path to the longest path could be up to 5.5ns, this difference is at a minimum for connections from inputs numerically close together and on the same side of the device to outputs that are numerically close together and on the same side of the device. propagation delay differences of less than 750ps can be expected when the inputs are ad jacent in the ballout and the outputs are also adjacent in the ballout. note: the 750ps propagation delay difference (skew) between phys ically adjacent channels is guaranteed by simulation. 4.5 using multiple strobes the gx3190 has eight fully-in dependent update strobes. outputs 287 to 0 can be assigned to one of the eight strobes through the setting of the update_ s ele c t bits in the corresponding dynami c [287:0] register. the input signal selection, output power switching and signal inversion will take effect on the low-to-high edge of its assigned strobe signal or bit. this allows different portions of the crosspoint to be switched at different points in time. this is particularly useful in systems supporting multiple data or video fo rmats, where the switch point/time varies from format to format.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 25 of 47 proprietary & confidential www.semtech.com 4.6 pattern generator and pattern checker 4.6.1 pattern generator note 1: there are two pattern generator ? tx ? blocks in the gx3190. in the following, wherever only tx0 is mentioned, the corresponding is also true for tx1. note 2: when the prbs generator is disabled, the generated signal does not completely terminate. the prbs polynomial bits must be re-written in order to terminate the signal. the two pattern generator ? tx ? blocks in the gx3190 can each independently generate prbs 2 7 -1, prbs 2 15 -1, and prbs 2 23 -1 data patterns, or alternating 1's and 0's. the built-in clock multipli er plls independentl y synthesize rates of 270mb/s and 2.97gb/s from the required, external 27mhz reference clock (see section 4.9 ). other rates up to 3gb/s can be generated by providing an exte rnal clock signal at 2x, 4x, or 22x the desired bit rate to tx1, with a maximum external clock frequency of 6ghz. while this facility exists for both tx0 and tx1, the user is cautioned that the digital core clock is derived from the tx0 data clock, and therefore interface and update timing will track the external clock frequency if one is provided to tx0. the pattern generators are enabled by the tx0_prb s _ g en_enable and tx1_prb s _ g en_enable bits (register address 0x80 2h, bits [1:0] respectively). the prbs generating polynomials used are: 1. prb s 7: x 7 + x 6 + 1 2. prb s 15: x 15 + x 14 + 1 3. prb s 23: x 23 + x 18 + 1 the pattern generated is selected via the tx0_prb s _polynomial and tx1_prb s _polynomial bits (register address 0x800h and 0x801h respectively). table 4-4: tx external clocks tx0 tx1 ext_ c lk_di g ital (a j 35) ext_ c lk2 (r15) ext_ c lk_di g ital (ah35) ext_ c lk2 (t15) table 4-5: generated patterns tx0_prbs_polynomial[1:0] (binary) pattern generated 00 prb s 7 01 prb s 15 10 prb s 23 11 s quare wave
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 26 of 47 proprietary & confidential www.semtech.com 4.6.2 pattern checker the pattern checkers de-serialize incoming serial data before checking for errors in the parallel domain. th ree comparison mo des are supported: 1. neutral phase c omparison mo d e. the incoming data is re-timed in a cdr, and sampled at the neutral (eye center) phase recovered by the cdr before de-serialization. errors with respect to the supported prbs sequences can be counted. 2. offset phase c omparison mo d e. the phase at which the incoming data is sampled with respect to the recovered clock is adjustable over a full ui. errors with respect to the supported prbs sequences can be counted. by sweeping the sampling phase and counting errors at each phase, an error rate ?bathtub curve? can be recorded, and the horizontal eye opening evaluated. 3. ar b itrary data c omparison mo d e. this mode can operate on arbitrary data patterns. the incoming serial data is sampled at both the neutral phase and the adjustable phase, and each of the two sampled data streams is de-serialized and the two streams are compared in the parallel domain. the pattern checker allows a true measurement of bit error rate for the supported prbs sequences in the first two modes above. the third, arbitrary data comparison mode, gives an indication of the degree of eye cl osure at a given sampling phase offset, but cannot detect bit errors in the incident data. see figure 4-1 and figure 4-2 below. fi g ure 4-1: s implifie d pattern g enerator/ c he c ker zero blo c k dia g ram /2 /11 cmu xtal osc. serializer/ pattern generator neutral phase deserializer cdr variable phase deserializer pattern checker 27mhz crosspoint core (146 x 290) ext_clk_digital ref_clk_in pattern generator 0 pattern checker 0 /2 /2 ref_clk_out ext_clk0 mon0/mon0 ext_pg0/ext_pg0 ext_clk_digital ext_clk0 input 144 output 288
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 27 of 47 proprietary & confidential www.semtech.com fi g ure 4-2: s implifie d pattern g enerator/ c he c ker one blo c k dia g ram note: there are two pattern checker ? rx ? blocks in the gx3190. in the following, wherever only rx0 is mentioned, the corresponding is also true for rx1. the cdr integrated in each rx block can inde pendently lock to data at rates of 270mb/s, 1.485gb/s and 2.97gb/s. other rates up to 3gb/s can be analyzed by providing an external clock signal of 2x, 4x, or 22x th e desired bit rate, with a maximum external clock frequency of 6ghz. note that retiming is not possible when using an external clock signal for the rx block. the external clock must be synchronous with any data to be checked and the rx0_prb s _ c hk_mode bits must be set to a value of '01'. the two pattern checker ? rx ? blocks in the gx3190 can each independently check prbs 2 7 -1, prbs 2 15 -1, and prbs 2 23 -1 data patterns. the error checking modes are selected by the rx0_prb s _ c hk_mode bits and the rx1_prb s _ c hk_mode bits (addresses 0x804h and 0x810h respectively). table 4-6: rx external clocks rx0 rx1 ext_ c lk0 (r35) ext_ c lk1 (a j 15) ext_ c lk0 (t35) ext_ c lk1 (ah15) table 4-7: checking modes rx0_prbs_chk_mode[1:0] (binary) input mode 00 c he c k d ata sample d at neutral phase 01 c he c k d ata sample d at a d justa b le phase 10 or 11 c ompare nominally sample d d ata with phase offset d ata (allows eye monitorin g of ar b itrary patterns) /2 /11 cmu xtal osc. serializer/ pattern generator neutral phase deserializer cdr variable phase deserializer pattern checker 27mhz crosspoint core (146 x 290) ext_clk2 pattern generator 1 pattern checker 1 /2 /2 ext_clk1 mon1/mon1 ext_pg1/ext_pg1 ext_clk2 ext_clk1 input 145 output 289 ref_clk_in ref_clk_out
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 28 of 47 proprietary & confidential www.semtech.com the pattern checker will check for the prbs pattern specified by the rx0_prb s _polynomial and rx1_prb s _polynomial bits (addresses 0x803h and 0x811h respectively). the prbs checkers are enabled by the rx0_prb s _enable and rx1_prb s _enable bits (register address 0x81dh[1:0] ). the incident data can be inverted before checking by setting the corresponding rx0_invert_prb s _in or rx1_invert_prb s _in bit (address 0x803h[2:2] and 0x811h[2:2] ) to '1'. the number of words to be compared is selectable via the corresponding rx0_prb s _ber_time and rx1_prb s _ber_time bits (registers 0x80ah and 0x817h ). the status of the two pattern chec king blocks is available in the rx0_prb s _lo c k and rx1_prb s _lo c k , rx0_prb s _pa ss and rx1_prb s _pa ss , rx0_prb s _fail and rx1_prb s _fail , and rx0_prb s _error_ c ount and rx1_prb s _error_ c ount read-only bits (see register addresse s 0x81eh to 0x821h). ? rx0_prb s _lo c k [0] - when high, indicates that the pattern checker has acquired the pattern ? rx0_prb s _pa ss [1] - when high, indicates that the pattern was locked, and the specified number of words have been compared with fewer detected errors than specified by the rx0_prb s _ber_thre s h parameter table 4-8: checked patterns rx0_prbs_polynomial[1:0] (binary) pattern checked 00 prb s 7 01 prb s 15 10 prb s 23 table 4-9: compared words rx0_prbs_ber_time[3:0] (binary) number of words* compared (decimal) 0000 infinite 0001 13 0010 2 6 0011 3277 0100 6 554 0101 8388 6 1 0110 1 6 77722 * note: ea c h wor d is c omprise d of 10 b its, therefore the a c tual num b er of samples c ompare d is 10 times the num b er of wor d s c ompare d .
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 29 of 47 proprietary & confidential www.semtech.com ? rx0_prb s _fail [2] - indicates that the test terminated in a failure condition. there are three possible failure conditions: 1. the pattern generator failed to lock in the number of attempts specified by rx0_prb s _lo c k_attempt s (in which case rx0_prb s _lo c k would still be '0'). 2. the pattern generator locked, but over the period of time indicated by the rx0_prb s _lol_time bits, a greater number of errors were detected than allowed by the rx0_prb s _lol_thre s h setting. in this error condition, the device determines that it has ? lost lock ?, and terminates the test. this error condition is detectable if both rx0_prb s _lo c k and rx0_prb s _fail bits are high, and the value of rx0_prb s _error_ c ount is less than rx0_prb s _ber_thre s h (the same applies for rx1_prb s _lo c k , rx1_prb s _fail and rx1_prb s _error_ c ount ). 3. the pattern generator locked, but the number of errors observed exceeded the value indicated by the rx0_prb s _ber_thre s h bits. this error is detectable if rx0_prb s _lo c k and rx0_prb s _fail are both high, and the value of rx0_prb s _error_ c ount is equal or greater than the value in rx0_prb s _ber_thre s h . note that the values of rx0_prb s _lo c k and rx1_prb s _lo c k , rx0_prb s _pa ss and rx1_prb s _pa ss , rx0_prb s _fail and rx1_prb s _fail, rx0_prb s _error_ c ount and rx1_prb s _error_ c ount are reset whenever any of the corresponding test parameters for the rx0 and rx1 pattern checkers are updated as well as whenever the corresponding rx0_prb s _enable or rx1_prb s _enable bits are set to '1' when previously set to '0'. to start a new prbs test when the previous one has already been run, either re-write rx0_prb s _ber_time / rx1_prb s _ber_time or toggle rx0_prb s _enable / rx1_prb s _enable . note: the pattern checkers will count zero errors if the incident data is simply a static zero.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 30 of 47 proprietary & confidential www.semtech.com 4.7 horizontal eye measurement as explained abov e, the gx3190 enables the measuremen t of bit error ?bathtub? curves at the video rates of 1485mb/s and 2970mb/s to assist in evaluating how much margin there is in the system. see using the monitoring features of the gx3290 application note for more information. 4.7.1 configuration for horizontal eye measurement ? route the input signal of interest to the mon0 or mon1 of the matrix ? route the monitor output of matrix to pattern checker rx, (rx0 in the notes below) by changing the rx0_ c he c k_key_d2a word from its default value of 512 (decimal) to 288 (decimal) ? for a prbs pattern, select a pattern length with a value of the rx0_prb s _polynomial bits set to match the source pattern, and set the rx0_prb s _ c hk_mode bits to 1 to select the phase interpolator path ? for an arbitrary pattern, set the rx0_prb s _ c hk_mode bits to 2 to select the direct data comparison mode ? set initial sampling phase with the rx0_pha s e_interpolator_pha s e_ s el_d2a bits (in the bi s t_rx_4 register) ? initiate error counting as described in section 4.6.2 above ? increment the sampling phase ?count errors ? repeat last two steps to cover one ui 4.8 temperature sensors the gx3190 has twelve on-chip temperature sensors comprised of four junction diode temperature sensors and four adcs, each wi th two selectable temperature sensors. analog output voltages can be used to determine the temperature of the chip at the junction diode temperature sensors in four different locations. an external test current is applied to each sensor, and the vo ltage across the sensor is measured. note that the ?a? and ?k? of the pin names indicate the preferred direction of the test current, but other junctions are present internally. test currents should be limited to 10ma or less. fi g ure 4-3: temperature s ensors dtherma[3:0] dthermk[3:0]
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 31 of 47 proprietary & confidential www.semtech.com in addition to the diode temperature sensors, four adcs, each with two selectable temperature sensors, are also provided. digitized temperatures can be read through the device?s host interface. fi g ure 4-4: map of thermometer ad c positions on die digitized 10-bit temperature values can be read through the host interface from registers j n c tn_temp_0 (register 0xa08h[9:0]) through j n c tn_temp_3 (register 0xa0bh[9:0]). the temperature word in each register will be updated every 2 13 clock cycles, provided the value of the respective c ount_pd_[3:0] bit remains low. when a c ount_pd_[3:0] bit goes high, the adc is reset and the corresponding j n c tn_temp_[3:0] register retains its last update d value. the clock rate can be selected between 211khz or 844k hz through the corresponding ad c _ c trl_ c lk_ s el_[3:0] bits (registers 0xa04h, 0xa05h, 0xa06h and 0xa07h). the junction temperature at each temperature sensor in terms of the adc output code is given by: where 3 is the temperature uncertainty. the accuracy of the temperature sensors can be improved by cali brating the gx3190 at a known ju nction te mperature. without calibration, the temperature uncertainty, due to process variations and component mismatch, can be as high as 27c. after calibration, the uncertainty can be reduced to about 2c. crosspoint core even outputs 0 to 288 odd outputs 1 to 289 odd inputs 1 to 289 package top-view of die thermo adc 1 even inputs 0 to 288 legend: ? remote ? temperature sensors adc and ? local ? temperature sensors thermo adc 2 thermo adc 0 thermo adc 3 table 4-10: junction temperature registers thermometer adc sensor location select register result register 0ad c _in_0 j n c tn_temp_0 1ad c _in_1 j n c tn_temp_1 2ad c _in_2 j n c tn_temp_2 3ad c _in_3 j n c tn_temp_3 t j 0.5489 j n c tn_temp_[3:0] 2 6 3 ? 3 + =
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 32 of 47 proprietary & confidential www.semtech.com see using the monitoring features of the gx3290 application note for more information. table 4-11: nominal temperature-to-code conversion tj (c) jnctn_temp_ [3:0] tj (c) jnctn_temp_ [3:0] tj (c) jnctn_temp_ [3:0] tj (c) jnctn_temp_ [3:0] -40 40 6 2 483 44 559 8 66 3 6 -38 410 4 48 6 4 6 5 6 388 6 39 -3 6 414 6 490 48 5 6 790 6 43 -34 417 8 494 50 570 92 6 47 -32 421 10 497 52 574 94 6 50 -30 424 12 501 54 578 9 66 54 -28 428 14 505 5 6 581 98 6 58 -2 6 432 1 6 508 58 585 100 66 1 -24 435 18 512 6 0 588 102 66 5 -22 439 20 51 66 2 592 104 66 9 -20 443 22 519 6 459 6 10 66 72 -18 44 6 24 523 66 599 108 6 7 6 -1 6 450 2 6 527 6 8 6 03 110 6 80 -14 454 28 530 70 6 07 112 6 83 -12 457 30 534 72 6 10 114 6 87 -10 4 6 1 32 538 74 6 14 11 66 90 -8 4 6 5 34 541 7 66 18 118 6 94 - 6 4 6 83 6 545 78 6 21 120 6 98 -4 472 38 548 80 6 25 122 701 -2 475 40 552 82 6 29 124 705 0 479 42 55 6 84 6 32 12 6 709
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 33 of 47 proprietary & confidential www.semtech.com 4.9 27mhz reference clock the gx3190 requires an external 27mhz reference clock for correct operation. this clock is multiplied to generate the digital core and interface clocks, and is also used to synthesize video rate clocks in the pattern generation blocks, and to acquire video rate signals in the pattern checker blocks. the reference clock has no impact on the jitter measurement performance when the pattern chec ker blocks are locked to external data sources, but has a direct impact on jitter performance within the loop bandwidth of the cmu pll in the pattern generation blocks. the 27mhz reference clock can be generated by connecting a crystal between the ref_clk_in and ref_clk_out balls, along with appropriate loading capacitors and a feedback resistor (see figure 3-5 ). alternatively, an lvcmos 27mhz external clock source can be connected to the ref_clk_in ball with the ref_clk_out ball left floating. the frequency variation of the crystal (including aging, supply and temperature variat ion) should be less than +/- 100ppm if the prbs checking and generation features are to be used in video applications. 4.10 device power-up note 1: no power supply sequencing is required (see section 4.11 ). there is a 50 s delay (t idle ) between the power supplies reaching their nominal value and the device becoming operational. during this time, there should be no host interface activity, and the update_en[7: 0] pins must be held low. the rc filter, shown in figure 3-3 , on each of the four vco supplies?vcc_25_vco0, vcc_25_vco1, vcc_25_vco2 and vcc_vco_di gital?is required to minimize the phase noise of the plls in pattern generation/detection modes, but the rise time of the filter on vcc_vco_digital in particular can impact the start-up time of the device internal clock. note 2: in applications where power supplies reach their final voltage in under 1ms (the time for the internal clock to start), approximately two time constants of the rc filter on vcc_vco_digital, can dominate the time fo r the gx3190 to emerge from reset upon power-up. in such cases, the time for vc c_vco_digital can be traded-off against supply filtering and hence low-frequency jitter of patterns generated by pattern generator zero. note 3: reset must be held low until all power supplies have stabilized. fi g ure 4-5: power-up timin g dia g ram nominal voltage 95 % nominal voltage supply voltage t idle {
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 34 of 47 proprietary & confidential www.semtech.com 4.11 device reset the reset pin is an active-low asynchronous reset for the device. assertion of the reset pin sets the device in its minimum power state. the minimum pulse width of the reset signal is 10ms (t reset ). there is a 50 s delay (t idle ) between the reset signal going high (inactive) and the device becoming operational. during this time (all of t reset + t idle ), there should be no host interface activity and the update_en[7:0] pins must be held low. note 1: reset must be held low until all power supplies have stabilized. note 2: upon emerging from reset, all sdi inputs and sdo outputs are powered-down, pattern generation and checking is inactive, and all registers assume their reset values as noted in the semtech crosspoint (gx3290 an d family) reference manual (for csrs) . reset timin g dia g ram 4.12 host interface 4.12.1 parallel host in terface specifications the asynchronous parallel peri pheral interface (appi) on th e gx3190 device allows an external host to access internal registers using parallel read and write operations. the gx3190 appi is selected by setting the host_s/p pin low. note: the s_cs pin must be pulled low when host_s/p is set low for parallel port communication. the host interface communicates with the control and status registers (csr) over an appi bridge. it is possible to write one register every 10ns (100mhz write update rate). it is also possible to read one register every 20ns (50mhz read update rate). the parallel interface is asynchronous. during writes, an active-low p_cs (chip select) enables the interface and ads (address/data strobe) latc hes 12-bit write address and 16-bit write data into the device. during reads, the same p_cs signal is used, and the ads signal latches the 12-bit read address and then clocks out the 16-bit read data. the p_r/w signal is used to differentiate between the two access types. an auto-increment mode exists for both reads and writes. this mode is configured by way of the appi_auto_in c rement bit in the ho s t_ s etup register. see section 6 in the semtech crosspoint (gx3290 and family) reference manual (for csrs) . t reset t idle reset
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 35 of 47 proprietary & confidential www.semtech.com 4.12.1.1 appi external timing for normal write fi g ure 4- 6 : external timin g for normal write c y c le table 4-12: appi inputs/outputs signal name i/o description p_ cs i c hip s ele c t from the host. p_ad s i a dd ress/data s tro b e from the host; use d to ? c lo c k? a dd ress an d write d ata into the c hip, an d to ? c lo c k? rea d d ata out of the c hip. p_r/w i rea d /write in d i c ation from the host; hi g h for rea d , low for write. p_add[11:0] i a dd ress from the host. p_dat[15:0] i/o write d ata from the host, or rea d d ata to the host. p_r/w d[15:0] p_add [11:0] p_dat [15:0] p_ads a[11:0] t srw_w t sa_w t sd_w t pw_w t hd_w t hrw_w t ha_w t csh_w p_cs t scs_w t hcs_w table 4-13: appi external timing specifications for normal write parameter symbol equiv. cycles min ty p max units p_ cs low b efore p_ad s positive e dg e t scs _w ? 10.0 ? ? ns p_ cs hol d time after p_ad s positive e dg e t h cs _w 2 14.8 ? ? ns p_r/w low b efore p_ cs ne g ative e dg e t s rw_w ?1.5??ns p_r/w hol d time after p_ad s positive e dg e t hrw_w 2 14.8 ? ? ns p_add[11:0] setup b efore p_ad s positive e dg e t s a_w ? 10.0 ? ? ns p_add[11:0] hol d after p_ad s positive e dg e t ha_w ?5.0??ns p_dat[15:0] setup b efore p_ad s positive e dg e t s d_w ?5.0??ns p_dat[15:0] hol d after p_ad s positive e dg e t hd_w ?5.0??ns p_ad s low pulse wi d th t pw_w 0. 6 4.4??ns p_ cs hi g h b efore next rea d /write c y c le t cs h_w 5 37.0 ? ? ns frequen c y for b a c k-to- b a c k sin g le writes ? ? ? ? 1 6 .17 mhz
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 36 of 47 proprietary & confidential www.semtech.com 4.12.1.2 appi external timing for auto-increment write fi g ure 4-7: external timin g for auto-in c rement write c y c le d n a n t srw_w t sa_w t sd_w t ha_w t hrw_w d n+1 [15:0] t csh_w t scs_w t hcs_w [15:0] [11:0] t hd_w t hd_w t sd_w t pw_w t adsh_w t pw_w p_r/w p_add [11:0] p_dat [15:0] p_ads p_cs table 4-14: appi external timing specifications for auto-increment write parameter symbol equiv. cycles min ty p max units p_ cs low b efore p_ad s positive e dg e t scs _w ? 10.0 ? ? ns p_ cs hol d time after last p_ad s positive e dg e t h cs _w 2 14.8 ? ? ns p_r/w low b efore p_ cs ne g ative e dg e t s rw_w ?1.5??ns p_r/w hol d time after p_ad s positive e dg e t hrw_w 2 14.8 ? ? ns p_add[11:0] setup b efore p_ad s positive e dg e t s a_w ? 10.0 ? ? ns p_add[11:0] hol d after p_ad s positive e dg e t ha_w ?5.0??ns p_dat[15:0] setup b efore p_ad s positive e dg e t s d_w ?4.0??ns p_dat[15:0] hol d after p_ad s positive e dg e t hd_w ?4.0??ns p_ad s low pulse wi d th t pw_w 0. 6 4.4 ? ? ns p_ad s hi g h b efore next pulse t ad s h_w 0. 6 4.4 ? ? ns p_ cs hi g h b efore next rea d /write c y c le t cs h_w 5 37.0 ? ? ns frequen c y d urin g auto-in c rement write ? ? ? ? 112.5 mhz
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 37 of 47 proprietary & confidential www.semtech.com 4.12.1.3 appi external timing for normal read fi g ure 4-8: external timin g for normal rea d c y c le d[15:0] a[11:0] t csh_r t hcs_r t scs_r t srw_r t hrw_r t rdz t cdz t sa_r t dnz t do t ha_r t pw_r p_r/w p_add [11:0] p_dat [15:0] p_ads p_cs table 4-15: appi external timing specifications for normal read parameter symbol equiv. cycles min ty p max units internal read pipeline delay (0 if one-cycle read) ?1???? p_ cs low b efore p_ad s ne g ative e dg e t scs _r ?5.0??ns p_ cs hol d time after p_ad s positive e dg e t h cs _r ?5.0??ns p_r/w hi g h b efore p_ cs ne g ative e dg e t s rw_r ?1.5??ns p_r/w hol d time after p_ad s positive e dg e t hrw_r ?5.0??ns p_add[11:0] setup b efore p_ad s ne g ative e dg e t s a_r ?0.0??ns p_add[11:0] hol d after p_ad s positive e dg e t ha_r ?0.0??ns p_dat[15:0] out of tristate after p_ad s ne g ative e dg e t dnz 214.8??ns p_dat[15:0] b e c omes vali d after p_ad s ne g ative e dg e t do ??? 6 5.0 ns p_dat[15:0] g oes tristate after p_ cs positive e dg e t dz ? ? ? 45.0 ns p_dat[15:0] g oes tristate after p_ad s positive e dg e t dz ? ? ? 45.0 ns p_ad s low pulse wi d th t pw ? 6 5.0 ? ? ns p_ cs hi g h b efore next rea d /write c y c le t cs h_r 322.2??ns frequen c y for b a c k-to- b a c k sin g le rea d s ? ? ? ? 10.29 mhz
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 38 of 47 proprietary & confidential www.semtech.com 4.12.1.4 appi external timing for auto-increment read fi g ure 4-9: external timin g for auto-in c rement rea d c y c le a n [11:0] d n [15:0] d n+1 [15:0] d n+2 [15:0] t scs_r t srw_r t csh_r t hcs_r t cdz t hrw_r t rdz t pw2_r t adsh_r t pw2_r t adsh_r t pw1_r t do1 t do2 t dx t do2 t dx t dx t sa_r t dnz t ha_r p_r/w p_add [11:0] p_dat [15:0] p_ads p_cs table 4-16: appi external timing specifications for auto-increment read parameter symbol equiv. cycles min ty p max units internal read pipeline delay (0 if one-cycle read) ?1???? p_ cs low b efore first p_ad s positive e dg e t scs _r ?5.0?? ns p_ cs hol d time after last p_ad s positive e dg e t h cs _r ?5.0?? ns p_r/w hi g h b efore p_ cs ne g ative e dg e t s rw_r ?1.5?? ns p_r/w hol d time after last p_ad s positive e dg e t hrw_r ?5.0?? ns p_add[11:0] setup b efore p_ad s ne g ative e dg e t s a_r ?0.0?? ns p_add[11:0] hol d after p_ad s positive e dg e t ha_r ?0.0?? ns p_dat[15:0] out of tristate after p_ad s ne g ative e dg e t dnz 2 14.8 ? ? ns p_dat[15:0] b e c omes vali d after first p_ad s ne g ative e dg e t do1 ???70.0ns p_dat[15:0] b e c omes vali d after p_ad s positive e dg e t do2 ???13.0ns p_dat[15:0] b e c omes invali d after p_ad s positive e dg e t dx ?3.0?? ns p_dat[15:0] g oes tristate after p_ cs positive e dg e t dz ? 12.0 ? 45.0 ns p_dat[15:0] g oes tristate after p_ad s positive e dg e t dz ? 12.0 ? 45.0 ns p_ad s first low pulse wi d th t pw1_r ? 70.0 ? ? ns p_ad s su b sequent low pulse wi d ths t pw2_r 1.2 8.9 ? ? ns p_ad s hi g h b etween pulses t ad s h_r 1.2 8.9 ? ? ns p_ cs hi g h b efore next rea d /write c y c le t cs h_r 5 37.0 ? ? ns frequen c y d urin g auto-in c rement rea d ????5 6 .25 mhz frequen c y for b a c k-to- b a c k sin g le rea d s in auto-in c rement mo d e ????8.54mhz
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 39 of 47 proprietary & confidential www.semtech.com 4.12.2 serial host in terface specifications the gennum serial peripheral interface (g spi) handles the communication with an external host over the spi port. it allows configuration of the control and status registers (csr) using serial read and write operations. the gx3190 gspi is selected by setting the host_s/p pin high. note 1: the p_cs pin must be pulled low when host_s/p is set high for serial port communication. the gx3190 uses a four-wire protocol, with serial communication via the input sdin pin, the output sdout pin, clock input signal (sclk), and the chip select signal (s_cs ). the signalling rate can be up to 25mb/s. the interface uses 16-bit data and a 16-bit address/control. the 16-bit address and control consists of a 12-bit address, one read/write bit (?1? for read, ?0? for write), on e bit for auto-increment and two unused bits. the four-wire protocol is implemented as shown in figure 4-10 and figure 4-11 . when the auto-increment bit is set low, each command word must be followed by only one data word to ensure proper operation. if the auto-increment bit is set high, the following data word is written into the address specified in the command word, and subsequent data words are written into incremental addresses from the first data wo rd. this facilitates multiple address reads or writes without sending a command word for each data word. fi g ure 4-10: s erial host interfa c e timin g dia g ram - write mo d e table 4-17: gspi inputs/outputs signal name i/o reference clock description sc lk i ? gs pi c lo c k s din i sc lk gs pi serial d ata input s dout o sc lk gs pi serial d ata output (on the ne g ative e dg e of sc lk) s _ cs i? gs pi c hip s ele c t sdin signal is looped out on sdout rrsv rsv auto_inc a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 t 0 t 8 t 2 t 3 t 1 t 7 t 4 r/w rsv rsv auto_inc a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 sclk sdout sdin s_cs
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 40 of 47 proprietary & confidential www.semtech.com fi g ure 4-11: s erial host interfa c e timin g dia g ram - rea d mo d e 70ns (t5) = 5 c lo c k c y c les at 135mhz plus sc lk an d s do si g nal propa g ation. 18.5ns (t9) = 2.5 c lo c k c y c les at 135mhz. max t 6 (1 6 ns) represents the latest time b y whi c h the s do will b e sta b le after the sc lk ne g ative e dg e. as s do must b e sample d on the sc lk positive e dg e, this d etermines the minimum sc lk perio d , an d therefore the maximum sc lk frequen c y. s do maximum transition time with 15pf loa d : 2ns. s do maximum transition time with 50pf loa d : 5ns. note 2: the gspi and appi are mutually exclusive (they can not both be used at the same time). sclk sdin signal is looped out on sdout sdout read data is output on sdout sdin t 9 t 6 t 5 r/w rsv rsv auto_inc a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 r/w rsv rsv auto_inc a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 s_cs table 4-18: serial host interface timing parameter symbol conditions equiv. cycles min ty p max units s _ cs low b efore sc lk positive e dg et0 50% levels; 3.3v or 1.8v operation ?7.0??ns sc lk frequen c y ? ? 0.1 ? 25.0 mhz sc lk perio d t1 ? 40.0 ? 10,000 ns sc lk d uty c y c le t2 ? 40.0 50.0 6 0.0 % input d ata setup time t3 ? 7.0 ? ? ns time b etween en d of c omman d wor d (or previous d ata wor d in auto-in c rement mo d e) an d the first sc lk of the followin g data wor d - write c y c le t4 ? 40.0 ? ? ns time b etween en d of c omman d wor d (or previous d ata wor d in auto-in c rement mo d e) an d the first sc lk of the followin g data wor d - rea d c y c le t5 ? 70.0 ? ? ns s do hol d time after sc lk ne g ative e dg e t 6 ?5.0?1 6 .0 ns s _ cs hi g h after last sc lk ne g ative e dg e t7 1.2 9.0 ? ? ns input d ata hol d time t8 ? 5.0 ? ? ns s _ cs hi g h time t9 2.5 18.5 ? ? ns
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 41 of 47 proprietary & confidential www.semtech.com 5. application information note: please refer to the following supplementary documents: ? crosspoint design guide ? eb-gx3290 schematics, pcb layo ut and bill of materials 5.1 power supply filter ing and recommendations one of the most important steps that pcb de signers can take to ensure power supply integrity for the gx3190 device is to design the pcb layer stack-up to minimize power plane pair inductance. locating supply planes adjacent to ground planes, and separated by minimum thickness dielectrics in the stack-up, will minimize plane-pair inductance, and incidentally maximize the plane pair capacitance. holes and cuts in the planes should be avoided as much as possible. whil e such closely spaced plane pairs allow the lowest inductance conn ections to supply pins of the gx3190 when they are closest to the device mounting surface of the pcb, the need to balance pcb stack-ups will lead to closely spaced layers on the far side of the pcb. the supply currents drawn from the vdd_18 and vddio_d supplies are noisy and activity dependent, and the corresponding supply/ground plane pairs should be treated as for fpga or cpu devices. supply currents drawn fr om the vcc_25_a, vcc_in1, vcc_in2, vcc_out1 and vcc_out2 supplies are continuous except under changes of the high speed signal path configuration. the vcc_out1 and vcc_out2 supplies in particular are subject to rapid steps in current under some configuration changes: the maximum combined current draw of the vc c_out1 and vcc_out2 supplies, 8.52a, can be switched in as little as 10ns. this current step may be reduced by appropriate programming of the device. locating point of use voltage regulators close to the gx3190 device on the pcb will maximize the regulation roll- off frequency. at the high est frequencies, the gx3190 package and mounting parasitics will limit the effectiveness of any measures on the pcb to suppress voltage ripple on the device supplies. in between the voltage regulator roll off frequencies and the frequencies where parasitics on each supply domain within the gx3190 isolate the die from the pcb, decoupling capacitors on the pcb are effective. pcb layout effort should be spent on details of the decoupling capacitor mounting layout. some simple layout measures can help to reduce the inductance of capacitor mounting. see the crosspoint design guide for more detailed recommendations.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 42 of 47 proprietary & confidential www.semtech.com 5.2 estimated worst-case load current steps under normal operation, the power supply networks need to minimize voltage transients due to configuration change relate d load current steps. when the device reset is asserted while the device is drawing significant current, the load on power supplies could be shed fast enough to raise concer ns about the board le vel voltage regulator dynamics, and the impact of any power supply network inductance. 5.2.1 vcc_25_a supply the tail currents of cml blocks (the high-speed signal paths) in the matrix switch relatively slowly, with worst case switching times of 30ns and typical times ~50ns. the matrix supply current of ~9.3a could in principle switch in 30ns, but in practice the propagation delay of update_en[7:0] signals across the matrix will increase the switching time somewhat. the vcc_25_a supply current drawn by indivi dual eqs takes more than 10ns to rise upon application of control signals. the vc c_25_a supply current drops in as little as 5ns upon assertion of reset, though, and the reset signal arrival times at eqs in a bank are roughly uniformly distributed over an interval of 0.8ns. this means that the vcc_25_a current drawn by all eqs togeth er, ~1.8a, could be shed in 5.8ns. the trace drivers draw significant current from the vcc_25_a supply, up to ~4.7a total for all trace drivers together, and this current can rise in as little as 20ns upon the de-assertion of power-down signals, or fall in as little as 1ns upon the assertion of power-down or reset signals. the arrival ti mes of power-down or reset signals within the bottom trace driver bank are nearly uniformly distributed over an interval of 0.8ns, while the arrival time of power-down or rese t signals within the top trace driver bank are nearly uniformly distributed over an interval of 4.4ns. the worst case total load current slew rate on the vcc_25_a supply is estimated from the above to be ~1.9ga/s. 5.2.2 vcc_out1, vc c_out2 supplies in simulation, the tail currents of trace driver output stages turn on in as little as 10ns. should all outputs be configured for maxi mum swing and enabled simultaneously, the load current step on each of vcc_out1, v cc_out2 would be as high as 4.26a (for ac-coupled applications) in ~14ns, 11ns respectively (including the propagation delay spread noted above). that large di/dt can be reduced by appropriate programming of updates. the vcc_out1 and vcc_out2 suppl y current drawn by each trace driver drops in as little as 1ns upon the assertion of device reset. the greater spread of signal arrival times in the top bank leads to a significantly smaller magnitude of di/dt on the vcc_out1 supply than on the vcc_out2 supply.
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 43 of 47 proprietary & confidential www.semtech.com 5.2.3 vcc_in1, vcc_in2 supplies the controls for the equalizers are serialized, and hence power switching of the equalizers in mission mode is staggered in time. assertion of reset will however lead to more nearly synchronous shedding of load. the typical current drawn from the vcc_in1 and vcc_in2 supplies is 0.85a each, an d this can be shed in 1ns, including the reset signal propagation delay. table 5-1: summary supply maximum current (a) maximum positive di/dt maximum negative di/dt (reset/simultaneous power-down) v cc _25_a 15.8 0. 6 2 g a/s -1.9 g a/s v cc _out1 4.2 6 0.42 g a/s -1.4 g a/s v cc _out2 4.2 6 0.54 g a/s -3. 6g a/s v cc _in1 0.85(typ) <0.1 g a/s -0.9 g a/s v cc _in2 0.85(typ) <0.1 g a/s -0.9 g a/s
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 44 of 47 proprietary & confidential www.semtech.com 6. package and ordering information 6.1 package dimensions 50mm x 50mm fcbga (1mm pitch) fi g ure 6 -1: pa c ka g e dimensions side view top view bottom view 50.00 38.00 50.00 38.00 a1 ball pad corner 0.20 b a a a 4x (6.00) 4x (6.00) (4x) 1.350.25 section a?a 36.00 0.500.05 3.690.12 0.60 +0.06 ?0.14 0.25 0.10 c a c b m m c c 0.20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 a b c d e f g h j k l m n p r t u v w y aa ab ac ad ae af ag ah aj ak al am an ap ar at au av aw ay ba bb bc bd be bf bg bh bj 1.00 1.00 (4.00) (4.00) a1 ball pad corner
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 45 of 47 proprietary & confidential www.semtech.com 6.2 package thermal da ta and information 6.3 marking diagram fi g ure 6 -2: markin g dia g ram table 6-1: package therma l data and information parameter value pa c ka g e type 50mm x 50mm hf c b g a moisture s ensitivity level 3 j un c tion to c ase thermal resistan c e, j- c 0.31 c /w j un c tion to air thermal resistan c e, j-a (at zero airflow) n/a. this d evi c e requires a heat sink. s ee s emte c h?s c rosspoint desi g n g ui d e . j un c tion to boar d thermal resistan c e, j- b 2.1 c /w p b -free an d roh s c ompliant yes instructions: gx3190 package mark zzzzzz marking batch work order information e3 pb-free & green indicator yyww date code pin 1 indicator gx3190 zzzzzze3 xxxxxx-yyww xxxxxx assembly batch work order information
gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 46 of 47 proprietary & confidential www.semtech.com 6.4 solder reflow profile the gx3190 is available in a pb-free package. it is recommended that the pb-free package be soldered with pb-free paste using the reflow profile shown in figure 6-3 . fi g ure 6 -3: maximum p b -free s ol d er reflow profile 6.5 ordering information appendix - relevant documentation 250 200 150 100 50 150c 180c 60 - 120s pre heating zone soldering zone 230c 1.0 - 2.0c/s 1.5 - 2.0c/s 1.0 - 2.0c/s 10 - 15s heating time device surface temperature (c) peak 245c table 6-2: ordering information part number package temperature range g x3190- c be3 50x50mm hf c -b g a0 c to 85 c table 6-3: relevant documentation document description document identification eb- g x3290 sc hemati c s, p c b layout an d bill of materials g endo c -05 6 057 g x3290 host c ontrol s oftware user manual g endo c -055970 usin g the monitorin g features of the g x3290 appli c ation note g endo c -058329 g x3290 (an d family) c rosspoint ball g ui d e g endo c -05 66 97 c rosspoint desi g n g ui d e g endo c -05 6 004 c rosspoint ( g x3290 an d family) referen c e manual (for cs rs) g endo c -05 6 832
? semtech 2012 all rights reserved. reproduction in whole or in part is pr ohibited without the prior writt en consent of the copyright owner. the information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. no liability will be accepted by the publisher for any consequence of its use. publication thereof does not convey nor imply any license under pa tent or other industrial or intellectual property rights. semtech assumes no responsibili ty or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the sp ecified maximum ratings or operation outside the specified range. semtech products are not designed, intended, authori zed or warranted to be suitable for use in life-support applications, devices or systems or other critical applicatio ns. inclusion of semtech products in such applications is understood to be undertaken solely at the customers own risk. should a customer purchase or use semtech products for any such unauthorized applic ation, the customer shall indemnify and hold semtech and its officers, employees, subs idiaries, affiliates, and distributors harmless against all claims, costs damages and atto rney fees which could arise. notice: all referenced brands, product names, service names and trademarks are the property of their respective owners . document identification final data sheet information relating to this product and the application or design described herein is believed to be reliable, ho wever such information is provided as a guide only and semtech assumes no liability for any errors in this document, or for the application or design described herein. semtech reserves the right to make changes to the product or this document at any time without notice. gx3190 146 x 290 3.5gb/s crosspoint final data sheet rev. 2 gendoc-056076 march 2013 47 of 47 47 proprietary & confidential contact information semtech corporation gennum products division 200 flynn road, camarillo, ca 93012 phone: (805) 498-2111, fax: (805) 498-3804 www.semtech.com caution ele c tro s tati c s en s itive devi c e s do not open pa c ka g e s or handle ex c ept at a s tati c -free work s tation www.semtech.com


▲Up To Search▲   

 
Price & Availability of GX3190-CBE3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X